When stepped coal getting technology was applied to high seam mining working face, with field observations the following aspects of working face were analyzed based on the inherent conditions of extremely soft thick s...When stepped coal getting technology was applied to high seam mining working face, with field observations the following aspects of working face were analyzed based on the inherent conditions of extremely soft thick seam mined by Liangbei Mine, such as the brokenness and activity law of rock seam in the working face, the law of load-bearing of its supports, and the instability character of coal or rock in tip-to-face area. The following are the major laws. Pressure intensity of roof in high seam mining with extremely soft thick seam is stronger than one in slicing and sublevel-caving as a whole. But the greater crushing deformation of coal side makes pressure intensity of roof in the middle of working face be equivalent to one in sublevel-caving. In the middle of working face the roof brokenness has less dynamic load effect than roof brokenness in the two ends of working face. The brokenness instability of distinct pace of roof brings several load-bearings to supports. In condition of extremely soft thick seam, the ratio of resistance increment of supports in two ends of working face is obviously greater than that of supports in the middle. Most sloughing in coal side is triangular slop sloughing caused by shear slipping in high seam mining with extremely soft thick seam. Ultrahigh mining is the major reason for roof fall. Instability of coal or rock in tip-to-face area can be controlled effectively with the methods such as improving setting load of supports, mining along roof by reinforcing floor and protecting the immediate roof in time, and so on.展开更多
It is showed in practice that the support load and its fluctuation is large, the periodic weighting is obvious and can be divided into two kinds, the large and small pressure, sometimes the behavior of the large press...It is showed in practice that the support load and its fluctuation is large, the periodic weighting is obvious and can be divided into two kinds, the large and small pressure, sometimes the behavior of the large pressure is very violent in hard thick seam caving faces. These are obviously different from those of the generally soft or medium hard seam caving feces. All above these are summarized, and the causes aroused these are researched. Finally the powered support selection of hard thick seam caving faces is discussed.展开更多
The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its’ reliability and service life can be increased by the use of a field oil contamination analyser and filter device to contro...The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its’ reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting theory contamination analyser are carried out.The filter effect of portable hydraulic driving oil filter model YLJ 21 is examinationed in laboratory and field experiment. From January to August 1992, on site experimental research using a silting theory contamination analyser and oil filter model YLJ 21 to control the oil contamination was carried out in the Datong Coal Mining Bureau.展开更多
In order to determine the influence of shearer's cutting and neighboring shields' advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine wer...In order to determine the influence of shearer's cutting and neighboring shields' advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine were analyzed. The results show that the relationship between the leg pressure increment and the distance from shield to front drum of shearer is a quadratic function and that the higher leg pressure increment before shield advance tends to be related to adverse roof conditions. In addition, the three proposed leg pressure increment-related parameters and the three traditional parameters(time-weighted average pressure, setting pressure, and final pressure) of approximately 32000 shield supporting cycles were calculated by a self-developed software package to analyze the correlation between them. The results show that there is a powerful connection between them, and that the three proposed leg pressure increment-related parameters could be used as the indexes to evaluate the interaction between shields and the roof, and to identify the periodic weighting.展开更多
When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body ...When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst.展开更多
The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order t...The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order to solve the problem, the process and mechanism of combined cutting arc studied and mining seepage catastrophe theory is used to construct the mathematic and physical model of combined cutting hard coal-rock. Based on the model and detailed analysis of combined cutting mechanism, the single pick and nozzle combined cutting test-bed is built to test the main pick and nozzle location parameters of drum shearer and water jet combined cutting system. Test results show that the best vertical distance between the pick-tip and nozzle center point is the sum of cutting thickness and proper target distance in the Y axial direction; the best horizontal distance is the length between pick-tip point and coal-rock surface bursting crack point in the X axial direction. The best incident angle of water jet should be the same as the bursting crack line's angle in theory, but considering other important factors comprehensively, it is more reasonable when the incident angle of water jet is 90°.展开更多
The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyze...The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it.展开更多
文摘When stepped coal getting technology was applied to high seam mining working face, with field observations the following aspects of working face were analyzed based on the inherent conditions of extremely soft thick seam mined by Liangbei Mine, such as the brokenness and activity law of rock seam in the working face, the law of load-bearing of its supports, and the instability character of coal or rock in tip-to-face area. The following are the major laws. Pressure intensity of roof in high seam mining with extremely soft thick seam is stronger than one in slicing and sublevel-caving as a whole. But the greater crushing deformation of coal side makes pressure intensity of roof in the middle of working face be equivalent to one in sublevel-caving. In the middle of working face the roof brokenness has less dynamic load effect than roof brokenness in the two ends of working face. The brokenness instability of distinct pace of roof brings several load-bearings to supports. In condition of extremely soft thick seam, the ratio of resistance increment of supports in two ends of working face is obviously greater than that of supports in the middle. Most sloughing in coal side is triangular slop sloughing caused by shear slipping in high seam mining with extremely soft thick seam. Ultrahigh mining is the major reason for roof fall. Instability of coal or rock in tip-to-face area can be controlled effectively with the methods such as improving setting load of supports, mining along roof by reinforcing floor and protecting the immediate roof in time, and so on.
文摘It is showed in practice that the support load and its fluctuation is large, the periodic weighting is obvious and can be divided into two kinds, the large and small pressure, sometimes the behavior of the large pressure is very violent in hard thick seam caving faces. These are obviously different from those of the generally soft or medium hard seam caving feces. All above these are summarized, and the causes aroused these are researched. Finally the powered support selection of hard thick seam caving faces is discussed.
文摘The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its’ reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting theory contamination analyser are carried out.The filter effect of portable hydraulic driving oil filter model YLJ 21 is examinationed in laboratory and field experiment. From January to August 1992, on site experimental research using a silting theory contamination analyser and oil filter model YLJ 21 to control the oil contamination was carried out in the Datong Coal Mining Bureau.
基金provided by the National High Technology Research and Development Program of China(No.2012AA062100)the Program for New Century Excellent Talents in University of China(No.NCET-10-0770)
文摘In order to determine the influence of shearer's cutting and neighboring shields' advance on the support resistance variation, leg pressure data of all 235 shields in the panel LW61 of Cumberland coal mine were analyzed. The results show that the relationship between the leg pressure increment and the distance from shield to front drum of shearer is a quadratic function and that the higher leg pressure increment before shield advance tends to be related to adverse roof conditions. In addition, the three proposed leg pressure increment-related parameters and the three traditional parameters(time-weighted average pressure, setting pressure, and final pressure) of approximately 32000 shield supporting cycles were calculated by a self-developed software package to analyze the correlation between them. The results show that there is a powerful connection between them, and that the three proposed leg pressure increment-related parameters could be used as the indexes to evaluate the interaction between shields and the roof, and to identify the periodic weighting.
基金supported by the National Basic Research Program of China (No. 2010CB226805)the Taishan Scholar Construction Project of Shandong Province, China+3 种基金the National Natural Science Foundation of China (No. 51344009)the Research Award Fund for Outstanding Young Scientists of Shandong Province (No. BS2012NJ007)the Ground Pressure and Strata Control Innovative Team Fund of SDUST (No. 2010KYTD105)the Natural Science Foundation of Shandong Province (No. ZR2012EEZ002)
文摘When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst.
基金Project(2012AA062104) supported by the National High Technology Research and Development Program of ChinaProject(201104583) supported by the Postdoctoral Special Funded Projects,China
文摘The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order to solve the problem, the process and mechanism of combined cutting arc studied and mining seepage catastrophe theory is used to construct the mathematic and physical model of combined cutting hard coal-rock. Based on the model and detailed analysis of combined cutting mechanism, the single pick and nozzle combined cutting test-bed is built to test the main pick and nozzle location parameters of drum shearer and water jet combined cutting system. Test results show that the best vertical distance between the pick-tip and nozzle center point is the sum of cutting thickness and proper target distance in the Y axial direction; the best horizontal distance is the length between pick-tip point and coal-rock surface bursting crack point in the X axial direction. The best incident angle of water jet should be the same as the bursting crack line's angle in theory, but considering other important factors comprehensively, it is more reasonable when the incident angle of water jet is 90°.
文摘The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it.