The use of piezoelectric material sensors in smart composite structures is investigated. An experimental structure bonded with lead zirconate titanate piezoelectric ceramic(PZT) sensors is developed. These bonded sens...The use of piezoelectric material sensors in smart composite structures is investigated. An experimental structure bonded with lead zirconate titanate piezoelectric ceramic(PZT) sensors is developed. These bonded sensors are employed to monitor load variations and transient impacts in the structure. Incorporated with pattern recognition approach, PZT sensors have succeeded in detecting the onset and location of damages.展开更多
Piezoelectric composite material (PCM) is an important branch of modernsensor and actuator materials with wide applications in smart structures. In this paper, based onpiezoelectric ceramic, composite and experimental...Piezoelectric composite material (PCM) is an important branch of modernsensor and actuator materials with wide applications in smart structures. In this paper, based onpiezoelectric ceramic, composite and experimental mechanics theories, a kind of 1-3 orthogonalanisotropic PCM (OAPCM) sensor is developed, and the sensing principle is analyzed to describesensor behaviors. In order to determine strain and stress on isotropic or orthogonal anisotropiccomponent surface, the relationships between strain and stress are established. The experimentalresearch on 1-3 OAPCM sensor is carried out in uniaxial and biaxial stress states. The results showthat 1-3 OAPCM sensors offer orthotropic properties of piezoelectricity, and sensing equations canbe used for strain or stress measurement with good accuracy.展开更多
A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, a...A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.展开更多
The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as senso...The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as sensors and actuators. One piezoelectric ceramic is bonded to the structure and provides control input for the structure, while the other piezoelectric ceramic provides the feedback signal. An approach to identification and control is presented. Observation spillover is eliminated by prefiltering the sensor data. A procedure used to determine actuator and sensor location, is discussed based on the modes to be controlled. Finally, the experimental results are presented to verify the proposed method.展开更多
文摘The use of piezoelectric material sensors in smart composite structures is investigated. An experimental structure bonded with lead zirconate titanate piezoelectric ceramic(PZT) sensors is developed. These bonded sensors are employed to monitor load variations and transient impacts in the structure. Incorporated with pattern recognition approach, PZT sensors have succeeded in detecting the onset and location of damages.
文摘Piezoelectric composite material (PCM) is an important branch of modernsensor and actuator materials with wide applications in smart structures. In this paper, based onpiezoelectric ceramic, composite and experimental mechanics theories, a kind of 1-3 orthogonalanisotropic PCM (OAPCM) sensor is developed, and the sensing principle is analyzed to describesensor behaviors. In order to determine strain and stress on isotropic or orthogonal anisotropiccomponent surface, the relationships between strain and stress are established. The experimentalresearch on 1-3 OAPCM sensor is carried out in uniaxial and biaxial stress states. The results showthat 1-3 OAPCM sensors offer orthotropic properties of piezoelectricity, and sensing equations canbe used for strain or stress measurement with good accuracy.
文摘A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.
文摘The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as sensors and actuators. One piezoelectric ceramic is bonded to the structure and provides control input for the structure, while the other piezoelectric ceramic provides the feedback signal. An approach to identification and control is presented. Observation spillover is eliminated by prefiltering the sensor data. A procedure used to determine actuator and sensor location, is discussed based on the modes to be controlled. Finally, the experimental results are presented to verify the proposed method.