To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the ...To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the measurement of physical parameters including mass,size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900℃.The results show that the density and P-wave velocity decrease gradually with increasing T.As the temperature increases,the peak compressive stress decreases while the peak strain increases,due to the fact that a high temperature induces the escaping of waters within granites,the expanding of mineral grains and the generations of fractures.With the increment of T,both the peak shear stress and the cohesion decrease,whereas the frictional angle increases.During the compressing and shearing tests,the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900℃.When T exceeds 573℃,the crystal lattice structure of quartz changes fromα-phase toβ-phase,decreasing the mechanical behavior of granites to a great extent.In addition,the results also indicate that T=500−600℃ is the critical temperature ramge to characterize the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites.展开更多
A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transpo...A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transporting them.In this paper,firstly,the design of the valveless piezoelectric pump with rotatable unsymmetrical slopes was proposed,and the single-direction flow principle was explained.Then,the fluid mechanics model of the valveless piezoelectric pump with rotatable unsymmetrical slopes was established.Meanwhile,the numerical simulation of the pump was performed.Finally,the experiments on relationship between the rotation angles of the slope and the flow rates were conducted.The experimental results showed that the maximum flow was 32.32 mL min 1.The maximum relative error between the theoretical results and the experimental ones was 14.59%.For the relationship between rotation angles and flow ratio of two inlets,the relative error between the experimental and theoretical maxima was 3.75%.Thus,the experiments proved the feasibility of the pump design and verified the theory.展开更多
Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel u...Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel using arching PZT actuator(APA) and principal modal control(PMC) method.Test results showed the peak value of power spectral density(PSD) function of tail buffeting acceleration response could be suppressed by about 42% when the angle of attack reached 35°,indicating the validity and feasibility of PMC method and APA for tail buffeting alleviation at high angle of attack.展开更多
A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that...A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that the defect modes are mainly decided by the applied voltage when the incident angle is smaller than 8°. As the incident angle further increases, the band gap and the defect modes shift toward the shorter wavelength side, and the changes of the two modes are different, In the lower voltage range, the defect modes can be tuned not only by the applied voltage but also by the incident angle. In the higher voltage range, the defect modes can be further tuned by varying incident angle and the different modes can be separated from each other by a bip incident anple.展开更多
基金Projects(51979272,BZ2020066)supported by the National Natural Science Foundation of ChinaProjet supported by the Department of Science and Technology of Jiangsu Province,China。
文摘To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the measurement of physical parameters including mass,size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900℃.The results show that the density and P-wave velocity decrease gradually with increasing T.As the temperature increases,the peak compressive stress decreases while the peak strain increases,due to the fact that a high temperature induces the escaping of waters within granites,the expanding of mineral grains and the generations of fractures.With the increment of T,both the peak shear stress and the cohesion decrease,whereas the frictional angle increases.During the compressing and shearing tests,the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900℃.When T exceeds 573℃,the crystal lattice structure of quartz changes fromα-phase toβ-phase,decreasing the mechanical behavior of granites to a great extent.In addition,the results also indicate that T=500−600℃ is the critical temperature ramge to characterize the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50775109 and 51075201)the Important Projects of National Science Foundation of China (Grant No. 50735002)Open Fund of State Key Lab of Digital Manufacturing Equipment and Technology (Grant No. DMETKF2009002)
文摘A valveless piezoelectric pump with rotatable unsymmetrical slopes is developed in this research.It has the following features:The pump integrates driving and transporting,and it can mix different fluids while transporting them.In this paper,firstly,the design of the valveless piezoelectric pump with rotatable unsymmetrical slopes was proposed,and the single-direction flow principle was explained.Then,the fluid mechanics model of the valveless piezoelectric pump with rotatable unsymmetrical slopes was established.Meanwhile,the numerical simulation of the pump was performed.Finally,the experiments on relationship between the rotation angles of the slope and the flow rates were conducted.The experimental results showed that the maximum flow was 32.32 mL min 1.The maximum relative error between the theoretical results and the experimental ones was 14.59%.For the relationship between rotation angles and flow ratio of two inlets,the relative error between the experimental and theoretical maxima was 3.75%.Thus,the experiments proved the feasibility of the pump design and verified the theory.
基金supported by the National Natural Science Foundation of China (Grant No. 11072198)the Basic Research Program of Northwestern Polytechnical University (Grant No. JC201102) "111" Project(Grant No. B07050)
文摘Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel using arching PZT actuator(APA) and principal modal control(PMC) method.Test results showed the peak value of power spectral density(PSD) function of tail buffeting acceleration response could be suppressed by about 42% when the angle of attack reached 35°,indicating the validity and feasibility of PMC method and APA for tail buffeting alleviation at high angle of attack.
基金supported by the National Natural Science Foundation of China (No.10805040)the Talent Introduction Program of Henan University of Technology (No.2007BS041)
文摘A tunable photonic crystal filter with a twisted nematic liquid crystal layer is proposed. The defect modes spectra with varying incident angles are discussed in detail by 4×4 matrix method. The results show that the defect modes are mainly decided by the applied voltage when the incident angle is smaller than 8°. As the incident angle further increases, the band gap and the defect modes shift toward the shorter wavelength side, and the changes of the two modes are different, In the lower voltage range, the defect modes can be tuned not only by the applied voltage but also by the incident angle. In the higher voltage range, the defect modes can be further tuned by varying incident angle and the different modes can be separated from each other by a bip incident anple.