在研究压电陶瓷微位移器的基础上,针对压电陶瓷的驱动特点和要求,设计了一种驱动电源。以单片机Atmega128和高压运算放大器PA78为核心器件,以及相关电路构成电压控制型驱动电源。介绍了主要模块电路的功能和实现,并对驱动电源进行测试...在研究压电陶瓷微位移器的基础上,针对压电陶瓷的驱动特点和要求,设计了一种驱动电源。以单片机Atmega128和高压运算放大器PA78为核心器件,以及相关电路构成电压控制型驱动电源。介绍了主要模块电路的功能和实现,并对驱动电源进行测试实验。驱动电源可输出0-300 V连续电压,分辨率可达10 m V、静态纹波〈5 m V。结果表明该电源具有线性度高、稳定性好、分辨率高等优点。展开更多
压电陶瓷驱动电源是压电陶瓷微位移器应用中关键部件。PA 85是一种高压、高精度的M O SFET运算放大器。文章介绍了一种基于PA 85的新型压电陶瓷驱动电源,详细介绍了电源复合放大电路部分的设计原理和并对其稳定性进行了分析。该电源具...压电陶瓷驱动电源是压电陶瓷微位移器应用中关键部件。PA 85是一种高压、高精度的M O SFET运算放大器。文章介绍了一种基于PA 85的新型压电陶瓷驱动电源,详细介绍了电源复合放大电路部分的设计原理和并对其稳定性进行了分析。该电源具有精度高,驱动能力强,结构简单,稳定性好的特点。展开更多
Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding shou...Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.展开更多
文摘在研究压电陶瓷微位移器的基础上,针对压电陶瓷的驱动特点和要求,设计了一种驱动电源。以单片机Atmega128和高压运算放大器PA78为核心器件,以及相关电路构成电压控制型驱动电源。介绍了主要模块电路的功能和实现,并对驱动电源进行测试实验。驱动电源可输出0-300 V连续电压,分辨率可达10 m V、静态纹波〈5 m V。结果表明该电源具有线性度高、稳定性好、分辨率高等优点。
文摘Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.