为获取人体升主动脉内膜力学性质,利用单轴拉伸系统,设计升主动脉内膜压破及拉伸试验方案,获取人体升主动脉内膜力学性质.研究结果表明:人体升主动脉内膜最大压破力与厚度正相关;内膜的周向与纵向的应力-应变均呈非线性曲线关系,并存在...为获取人体升主动脉内膜力学性质,利用单轴拉伸系统,设计升主动脉内膜压破及拉伸试验方案,获取人体升主动脉内膜力学性质.研究结果表明:人体升主动脉内膜最大压破力与厚度正相关;内膜的周向与纵向的应力-应变均呈非线性曲线关系,并存在各向异性,升主动脉内膜的纵向最大拉伸断裂应力大于周向,初始弹性模量分别为1 104、787 k Pa.因此,在对主动脉内膜破裂风险评估及建立主动脉壁本构方程时应考虑厚度;在夹层、动脉瘤扩张初期,原发破口易沿纵向继续撕裂.展开更多
Portal hypertension can be caused by a wide variety of conditions.It frequently presents with bleeding from esophageal varices.The approach to acute variceal hemorrhage in children is a stepwise progression from least...Portal hypertension can be caused by a wide variety of conditions.It frequently presents with bleeding from esophageal varices.The approach to acute variceal hemorrhage in children is a stepwise progression from least invasive to most invasive.Management of acute variceal bleeding is straightforward.But data on primary prophylaxis and long term management prevention of recurrent variceal bleeding in children is scarce,therefore prospective multicenter trials are needed to establish best practices.展开更多
The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual s...The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality.展开更多
A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is compos...A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.展开更多
Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the st...Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the strength of block,mortar and grouted concrete,respectively.The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed,and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods.The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out.Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry.Moreover,the formulas of compressive strength,detection methods and proposals are given as well.展开更多
Particle size distribution significantly influences the mechanical response of the ballast under low confining pressure.However,particle breakage usually occurs and unfavorably degrades the particle size distribution ...Particle size distribution significantly influences the mechanical response of the ballast under low confining pressure.However,particle breakage usually occurs and unfavorably degrades the particle size distribution of the ballast when sufficient load is applied.To model the triaxial stress-strain behavior and its associated evolution of particle size distribution of the ballast,a specific bounding surface model is proposed.The proposed model is based on the traditional bounding surface plasticity and a modified particle breakage index,which correlates the initial gradation and the ultimate gradation together with the current gradation.Simulation of the experimental results from the triaxial compression tests shows that the proposed model can predict the strain softening and volumetric expansion of the ballast under relatively lower confining pressure.It is also able to simulate the strain hardening and volumetric compression of the ballast under relatively higher confining pressure.Most importantly,the proposed approach was observed to have a great potential in predicting the evolution of the particle size distribution of the ballast.展开更多
文摘为获取人体升主动脉内膜力学性质,利用单轴拉伸系统,设计升主动脉内膜压破及拉伸试验方案,获取人体升主动脉内膜力学性质.研究结果表明:人体升主动脉内膜最大压破力与厚度正相关;内膜的周向与纵向的应力-应变均呈非线性曲线关系,并存在各向异性,升主动脉内膜的纵向最大拉伸断裂应力大于周向,初始弹性模量分别为1 104、787 k Pa.因此,在对主动脉内膜破裂风险评估及建立主动脉壁本构方程时应考虑厚度;在夹层、动脉瘤扩张初期,原发破口易沿纵向继续撕裂.
文摘Portal hypertension can be caused by a wide variety of conditions.It frequently presents with bleeding from esophageal varices.The approach to acute variceal hemorrhage in children is a stepwise progression from least invasive to most invasive.Management of acute variceal bleeding is straightforward.But data on primary prophylaxis and long term management prevention of recurrent variceal bleeding in children is scarce,therefore prospective multicenter trials are needed to establish best practices.
基金The financial supports from the National Natural Science Foundation of China (No.50674083)the Eleventh Five-Year Plan of National Scientific and Technological Support of China (No.2008BAB36 B07)the Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality.
基金Supported by the National Natural Science Foundation of China (50974107) the University Graduate Research and Innovation Project in Jiangsu Province (CXZZI2_0924)+1 种基金 the Applied Basic Research Project of Yancheng Institute of Technology (XKR2010010) the State Key Laboratory Open Foundation of Deep Geomechanics and Underground Engineering of China University of Mining and Technology (SKLGDUEK1014)
文摘A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.
文摘Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the strength of block,mortar and grouted concrete,respectively.The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed,and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods.The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out.Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry.Moreover,the formulas of compressive strength,detection methods and proposals are given as well.
基金supported by the China Scholarship Council in the University of Wollongong(Grant No.201306710022)
文摘Particle size distribution significantly influences the mechanical response of the ballast under low confining pressure.However,particle breakage usually occurs and unfavorably degrades the particle size distribution of the ballast when sufficient load is applied.To model the triaxial stress-strain behavior and its associated evolution of particle size distribution of the ballast,a specific bounding surface model is proposed.The proposed model is based on the traditional bounding surface plasticity and a modified particle breakage index,which correlates the initial gradation and the ultimate gradation together with the current gradation.Simulation of the experimental results from the triaxial compression tests shows that the proposed model can predict the strain softening and volumetric expansion of the ballast under relatively lower confining pressure.It is also able to simulate the strain hardening and volumetric compression of the ballast under relatively higher confining pressure.Most importantly,the proposed approach was observed to have a great potential in predicting the evolution of the particle size distribution of the ballast.