The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the...The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .展开更多
To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve...To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.展开更多
This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this con...This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.展开更多
Very high flow coefficient centrifugal compressor stages are mostly performance of this type of stages is critical to the entire centrifugal applied as the first stages of multistage compressors. The compressors, but ...Very high flow coefficient centrifugal compressor stages are mostly performance of this type of stages is critical to the entire centrifugal applied as the first stages of multistage compressors. The compressors, but surprisingly little related information is available in the open literature. A centrifugal compressor with high inlet flow coefficient of 0.2, presenting a narrow operating range and unstable running situation even at design speed during the test, is investigated here. To reveal flow details in this centrifugal compressor, numerical simulations have been carried out and indicate that excessive impeller flow diffusion results in the poor performance of this centrifugal compressor. With the same inlet flow coefficient, six redesign cases coming from an in-house one-dimensional analysis program are proposed together with impeller trimming and equal flow area design method for corresponding vaneless diffuser. Performance comparison among these redesign centrifugal compressors is presented and the most suitable one is recommended for test in the future. In addition, three redesign cases with lower inlet flow coefficient developed by means of flow trimming are shown in the end to satisfy potential application areas. Finally, the results in this study can provide valuable reference information for multistage centrifugal compressor design.展开更多
The superimposed influences of the blade rows in a multistage compressor are important because different matches of upstream and downstream blades can result in significant differences in the stator wake oscillation. ...The superimposed influences of the blade rows in a multistage compressor are important because different matches of upstream and downstream blades can result in significant differences in the stator wake oscillation. Numerical investigation of the axial stator wake oscillation, which is affected upstream by the axial rotor and downstream by the radial rotor, was performed in an axial-radial combined compressor. Many configurations with different blade numbers and locations, which influence axial stator wake oscillation were investigated. When rotors have equal blade numbers, the axial stator wake oscillates periodically versus time within time T(moving blade passing 1/3 revolution). In contrast, stator wake oscillates irregularly within T when rotors have different blade numbers. A model-split subtraction method is presented in order to separate the influences of the individual blade rows on the wake oscillation of the axial stator. Analysis from the rotor-stator configuration showed that the unsteady flow angle fluctuation response is caused by the upstream rotor. For the rotor-stator-rotor configuration, the unsteady flow angle fluctuations are influenced by upand downstream blade rows. With the model-split subtraction method, the upand downstream influences on the flow angle fluctuation could be clearly separated and quantified. Low amplitudes could be observed when the influences from upand downstream moving rows were superimposed with the "positive peaknegative peak" type wave. Clocking investigations were carried out to change the relative superimposed phase of influences from the surrounding blade rows in order to modulate the amplitudes of the axial stator wake oscillation. However, the amplitudes did not reach the maximum when they were superimposed with "positive peak-positive peak" type wave due to the impact of the interaction between the two moving blade rows.展开更多
文摘The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .
文摘To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.
文摘This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.
基金supported by the National Natural Science Foundation of China(Grant Nos.51206164 and 51010007)
文摘Very high flow coefficient centrifugal compressor stages are mostly performance of this type of stages is critical to the entire centrifugal applied as the first stages of multistage compressors. The compressors, but surprisingly little related information is available in the open literature. A centrifugal compressor with high inlet flow coefficient of 0.2, presenting a narrow operating range and unstable running situation even at design speed during the test, is investigated here. To reveal flow details in this centrifugal compressor, numerical simulations have been carried out and indicate that excessive impeller flow diffusion results in the poor performance of this centrifugal compressor. With the same inlet flow coefficient, six redesign cases coming from an in-house one-dimensional analysis program are proposed together with impeller trimming and equal flow area design method for corresponding vaneless diffuser. Performance comparison among these redesign centrifugal compressors is presented and the most suitable one is recommended for test in the future. In addition, three redesign cases with lower inlet flow coefficient developed by means of flow trimming are shown in the end to satisfy potential application areas. Finally, the results in this study can provide valuable reference information for multistage centrifugal compressor design.
基金Financially supported by National Natural Science Foundation of China(No.51176013)Chinese Specialized Research Fund for the Doctoral Program of Higher Education(No.20091101110014)
文摘The superimposed influences of the blade rows in a multistage compressor are important because different matches of upstream and downstream blades can result in significant differences in the stator wake oscillation. Numerical investigation of the axial stator wake oscillation, which is affected upstream by the axial rotor and downstream by the radial rotor, was performed in an axial-radial combined compressor. Many configurations with different blade numbers and locations, which influence axial stator wake oscillation were investigated. When rotors have equal blade numbers, the axial stator wake oscillates periodically versus time within time T(moving blade passing 1/3 revolution). In contrast, stator wake oscillates irregularly within T when rotors have different blade numbers. A model-split subtraction method is presented in order to separate the influences of the individual blade rows on the wake oscillation of the axial stator. Analysis from the rotor-stator configuration showed that the unsteady flow angle fluctuation response is caused by the upstream rotor. For the rotor-stator-rotor configuration, the unsteady flow angle fluctuations are influenced by upand downstream blade rows. With the model-split subtraction method, the upand downstream influences on the flow angle fluctuation could be clearly separated and quantified. Low amplitudes could be observed when the influences from upand downstream moving rows were superimposed with the "positive peaknegative peak" type wave. Clocking investigations were carried out to change the relative superimposed phase of influences from the surrounding blade rows in order to modulate the amplitudes of the axial stator wake oscillation. However, the amplitudes did not reach the maximum when they were superimposed with "positive peak-positive peak" type wave due to the impact of the interaction between the two moving blade rows.