A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general...A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.展开更多
In order to clarify the differences of very high cycle fatigue(VHCF) behavior of nickel based superalloy IN718 with different loading frequencies,stress-controlled fatigue tests were carried out by using ultrasonic te...In order to clarify the differences of very high cycle fatigue(VHCF) behavior of nickel based superalloy IN718 with different loading frequencies,stress-controlled fatigue tests were carried out by using ultrasonic testing method(20 KHz) and rotary bending testing method(52.5 Hz),both at room temperatures,to establish stress versus cycles to failure(S-N) relationships.Results disclosed that cycles to failure at a given stress level increased with an increase of the applied frequency,i.e.,the higher frequency produced an upper shift of the S-N curves.Fractographic analysis suggested that crack initiation and propagation behaviors had large differences:cracks in low-frequency tests preferentially initiated from multiple sources on the specimen surface,while in high-frequency tests,cracks mostly originated from a unique source of subsurface inclusions.Subsequently,frequency-involved modeling was proposed,based on the damage accumulation theory,which could well illustrate qualitatively those comparisons due to different loading frequencies.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2006AA05Z231)the National Natural Science Foundation of China(No.51177025)
文摘A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872105 and 51071094)
文摘In order to clarify the differences of very high cycle fatigue(VHCF) behavior of nickel based superalloy IN718 with different loading frequencies,stress-controlled fatigue tests were carried out by using ultrasonic testing method(20 KHz) and rotary bending testing method(52.5 Hz),both at room temperatures,to establish stress versus cycles to failure(S-N) relationships.Results disclosed that cycles to failure at a given stress level increased with an increase of the applied frequency,i.e.,the higher frequency produced an upper shift of the S-N curves.Fractographic analysis suggested that crack initiation and propagation behaviors had large differences:cracks in low-frequency tests preferentially initiated from multiple sources on the specimen surface,while in high-frequency tests,cracks mostly originated from a unique source of subsurface inclusions.Subsequently,frequency-involved modeling was proposed,based on the damage accumulation theory,which could well illustrate qualitatively those comparisons due to different loading frequencies.