In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S...In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
Based on the Particle Flow Code(PFC^(2D)) program,we set up gangue backfill models with different gangue contents and bond strength,and studied the stress-strain behaviours,the pattern of shear band and force chains,m...Based on the Particle Flow Code(PFC^(2D)) program,we set up gangue backfill models with different gangue contents and bond strength,and studied the stress-strain behaviours,the pattern of shear band and force chains,motion and fragmentation of particles under biaxial compression.The results show that when the bond strength or contents of gangue are high,the peak strength is high and the phenomena of post-peak softening and fluctuation are obvious.When gangue contents are low,the shape of the shear band is symmetrical and most strong force chains transfer in soil particles.With an increase in gangue content,the shape of the shear band becomes irregular and the majority of strong force chains turn to transfer in gangue particles gradually,most of which distribute along the axial direction.When the gangue content is higher than 50%,the interconnectivity of strong force chains decreases gradually:at the same time,the strong force chains become tilted and the stability of the system tends to decrease.With an increase in external loading,the coordination numbers of the system increase at first and then decrease and the main pattern of force chains changes into columnar from annular.However,after the forming of the advantageous shear band,the force chains external to the shear band maintain their columnar shape while the inner ones bend obviously.As a result,annular force chains form.展开更多
To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and charac...To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process.展开更多
In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities...In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.展开更多
The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In ...The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively.展开更多
基金Project(2021YFC2900600)supported by the Young Scientist Project of National Key Research and Development Program of ChinaProject(52074166)supported by the National Natural Science Foundation of China+1 种基金Projects(ZR2021YQ38,ZR2020QE121)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022KJ101)supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province,China。
文摘In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.2010QNB25 and 2012LWB66)the National Natural Science Foundation of China(Nos.51323004,51074163 and 50834005)+1 种基金the Trans-Century Training Programme Foundation for the Talents by the State Education Commission(No.NCET-08-0837)the"Six Major Talent"Plan of Jiangsu Province and the Graduate Innovation Fund Project of Jiangsu Province(No.CXZZ13_0924)
文摘Based on the Particle Flow Code(PFC^(2D)) program,we set up gangue backfill models with different gangue contents and bond strength,and studied the stress-strain behaviours,the pattern of shear band and force chains,motion and fragmentation of particles under biaxial compression.The results show that when the bond strength or contents of gangue are high,the peak strength is high and the phenomena of post-peak softening and fluctuation are obvious.When gangue contents are low,the shape of the shear band is symmetrical and most strong force chains transfer in soil particles.With an increase in gangue content,the shape of the shear band becomes irregular and the majority of strong force chains turn to transfer in gangue particles gradually,most of which distribute along the axial direction.When the gangue content is higher than 50%,the interconnectivity of strong force chains decreases gradually:at the same time,the strong force chains become tilted and the stability of the system tends to decrease.With an increase in external loading,the coordination numbers of the system increase at first and then decrease and the main pattern of force chains changes into columnar from annular.However,after the forming of the advantageous shear band,the force chains external to the shear band maintain their columnar shape while the inner ones bend obviously.As a result,annular force chains form.
基金the National Natural Science Foundation of China (Nos.51323004 and 51574223)the Postdoctoral Science Foundation of China (No.2015M571842)the Open Research Fund of Research Center of Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology (No.SJXTY1502)
文摘To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process.
文摘In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.
文摘The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively.