期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于自适应低秩去噪的近似消息传递压缩感知恢复 被引量:2
1
作者 熊承义 陈仕长 +3 位作者 高志荣 李世宇 金鑫 李治邦 《中南民族大学学报(自然科学版)》 CAS 2019年第1期112-118,共7页
图像隐含的低秩先验特性已被成功应用于去噪等图像恢复应用.考虑到自然图像具有的非平稳特性以及迭代重构中图像噪声强度的变化,提出了一种结合近似消息传递与自适应低秩去噪的图像压缩感知重构方法.根据迭代重构图像的噪声方差估计,自... 图像隐含的低秩先验特性已被成功应用于去噪等图像恢复应用.考虑到自然图像具有的非平稳特性以及迭代重构中图像噪声强度的变化,提出了一种结合近似消息传递与自适应低秩去噪的图像压缩感知重构方法.根据迭代重构图像的噪声方差估计,自适应地调整分块图像的大小以及相似块组的规模,实现低秩去噪性能的有效提升,从而保证了迭代重构的收敛速度,并同时改善了重构图像的质量.大量实验结果表明:该方法在无噪和有噪观测环境下都具有较好的重构性能,且能够有效地保留图像的纹理细节信息. 展开更多
关键词 压缩感知恢复 近似消息传递 低秩去噪 迭代阈值
下载PDF
基于小波变换的图像压缩感知深度重构网络 被引量:3
2
作者 熊承义 李治邦 +2 位作者 高志荣 金鑫 秦鹏飞 《中南民族大学学报(自然科学版)》 CAS 2020年第4期397-404,共8页
基于深度学习的压缩感知图像重构在当前得到了广泛关注。为了利用图像的先验特性改进压缩感知图像的重构质量,提出了一种基于小波变换的图像压缩感知深度重构方法。基于迭代展开网络框架,设计的深度压缩感知重构网络包括采用梯度下降算... 基于深度学习的压缩感知图像重构在当前得到了广泛关注。为了利用图像的先验特性改进压缩感知图像的重构质量,提出了一种基于小波变换的图像压缩感知深度重构方法。基于迭代展开网络框架,设计的深度压缩感知重构网络包括采用梯度下降算法的图像冗余更新模块和采用小波变换的图像去噪模块,冗余更新模块和去噪模块交替多级级联。图像去噪模块保留小波低频分量不变,只对高频成分进行滤波去噪处理。提出的网络引入了自适应采样,以提高图像的采样效率。大量实验结果比较验证了所提方法的有效性. 展开更多
关键词 深度学习 压缩感知恢复 小波变换 自适应采样
下载PDF
1-Bit compressive sensing: Reformulation and RRSP-based sign recovery theory 被引量:4
3
作者 ZHAO YunBin XU ChunLei 《Science China Mathematics》 SCIE CSCD 2016年第10期2049-2074,共26页
Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or ... Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or the sign of a signal that can be exactly recovered with a decoding method. We first show that a necessary assumption (that has been overlooked in the literature) should be made for some existing theories and discussions for 1-bit CS. Without such an assumption, the found solution by some existing decoding algorithms might be inconsistent with 1-bit measurements. This motivates us to pursue a new direction to develop uniform and nonuniform recovery theories for 1-bit CS with a new decoding method which always generates a solution consistent with 1-bit measurements. We focus on an extreme case of 1-bit CS, in which the measurements capture only the sign of the product of a sensing matrix and a signal. We show that the 1-bit CS model can be reformulated equivalently as an t0-minimization problem with linear constraints. This reformulation naturally leads to a new linear-program-based decoding method, referred to as the 1-bit basis pursuit, which is remarkably different from existing formulations. It turns out that the uniqueness condition for the solution of the 1-bit basis pursuit yields the so-called restricted range space property (RRSP) of the transposed sensing matrix. This concept provides a basis to develop sign recovery conditions for sparse signals through 1-bit measurements. We prove that if the sign of a sparse signal can be exactly recovered from 1-bit measurements with 1-bit basis pursuit, then the sensing matrix must admit a certain RRSP, and that if the sensing matrix admits a slightly enhanced RRSP, then the sign of a k-sparse signal can be exactly recovered with 1-bit basis pursuit. 展开更多
关键词 1-bit compressive sensing restricted range space property 1-bit basis pursuit linear program l0-minimization sparse signal recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部