Compression is an intuitive way to boost the performance of a database system. However, compared with other physical database design techniques, compression consumes large amount of CPU power. There is a trade-off bet...Compression is an intuitive way to boost the performance of a database system. However, compared with other physical database design techniques, compression consumes large amount of CPU power. There is a trade-off between the re- duction of disk access and the overhead of CPU processing. Automatic design and adaptive administration of database systems are widely demanded, and the automatic selection of compression schema to compromise the trade-off is very important. In this paper, we present a model with novel techniques to integrate a rapidly convergent agent-based evolution framework, i.e. the SWAF (SWarm Algorithm Framework), into adaptive attribute compression for relational database. The model evolutionally consults statistics of CPU load and IO bandwidth to select compression schemas considering both aspects of the trade-off. We have im- plemented a prototype model on Oscar RDBMS with experiments highlighting the correctness and efficiency of our techniques.展开更多
There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf ...There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. If a partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more com- pressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of “ALL” cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.展开更多
基金Project (No. 2004AA4Z3010) supported by the National Hi-Tech Research and Development Program (863) of China
文摘Compression is an intuitive way to boost the performance of a database system. However, compared with other physical database design techniques, compression consumes large amount of CPU power. There is a trade-off between the re- duction of disk access and the overhead of CPU processing. Automatic design and adaptive administration of database systems are widely demanded, and the automatic selection of compression schema to compromise the trade-off is very important. In this paper, we present a model with novel techniques to integrate a rapidly convergent agent-based evolution framework, i.e. the SWAF (SWarm Algorithm Framework), into adaptive attribute compression for relational database. The model evolutionally consults statistics of CPU load and IO bandwidth to select compression schemas considering both aspects of the trade-off. We have im- plemented a prototype model on Oscar RDBMS with experiments highlighting the correctness and efficiency of our techniques.
基金Project (No. 20030487032) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. If a partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more com- pressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of “ALL” cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.