This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow fi...This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow field within the rotor passage was simulated with the datum tip clearance of 0.356 mm at the design wheel speed of 17188.7 rpm. The simulation results are well consistent with the measurement results, which verified the numeri- cal method. Then the three-dimensional steady flow field within the rotor passage was simulated respectively with different axial non-uniform tip clearances. The calculation results showed that optimal axial non-uniform tip clearances could improve the compressor performance, while the efficiency and the pressure ratio of the com- pressor were increased. The flow mechanism is that the axial non-uniform tip clearance can weaken the tip leak- age vortex, blow down low-energy fluids in boundary layers and reduce both flow blockage and tip loss.展开更多
Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition mod...Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition modelling on the blade surfaces are presented. Steady three dimensional Reynolds Averaged Navier Stokes (RANS) simulations were performed to obtain the flow fields for the different configurations at different operating conditions using the RANS-Solver TRACE. The stage geometry and the multi-block structured grid were generated by G3DMESH and a grid sensitivity analysis was conducted. For the clearance gap region, a fully gridded special H-grid was chosen. Comparisons were made between the flow characteristic at design speed, representative for a transonic flow regime, and at 65% speed, representative for a subsonic flow regime. The computations were used to analyse the flow phenomena through the tip clearance region for the different configurations and their impact on the performance of the compressor stage.展开更多
The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial ...The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with avail- able measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estima- tion of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub end- wall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.展开更多
In this research, the centrifugal compressor of a turbocharger is investigated experimentally and numerically. Performance characteristics of the compressor were obtained experimentally by measurements of rotor speed ...In this research, the centrifugal compressor of a turbocharger is investigated experimentally and numerically. Performance characteristics of the compressor were obtained experimentally by measurements of rotor speed and flow parameters at the inlet and outlet of the compressor. Three dimensional flow field in the impeller and dif- fuser was analyzed numerically using a full Navier-Stokes program with SST turbulence model. The performance characteristics of the compressor were obtained numerically, which were then compared with the experimental results. The comparison shows good agreement. Furthermore, the effect of area ratio and tip clearance on the performance parameters and flow field was stud- ied numerically. The impeller area ratio was changed by cutting the impeller exit axial width from an initial value of 4.1 mm to a final value of 5.1 mm, resulting in an area ratio from 0.792 to 0.965. For the rotor with exit axial width of 4.6 mm, performance was investigated for tip clearance of 0.0, 0.5 and 1.0 mm. Results of this simula- tion at design point showed that the compressor pressure ratio peaked at an area ratio of 0.792 while the effi- ciency peaked at a higher value of area ratio of 0.878. Also the increment of the tip clearance from 0 to 1 mm resulted in 20 percent efficiency decrease.展开更多
A single screw compressor (SSC) is an important component found in many refrigeration systems.However,the durability is not so good because of the friction between its meshing pair.Therefore the column envelope meshin...A single screw compressor (SSC) is an important component found in many refrigeration systems.However,the durability is not so good because of the friction between its meshing pair.Therefore the column envelope meshing pair was pro-posed to prolong the operating life of SSCs,although it has not been applied to commercial refrigeration systems.To accelerate the industrial application,a mathematical model for analyzing the column envelope meshing pair is established based on the geometry and kinematics.Equations giving the flanks of column envelope grooves are obtained,and teeth flank meshing with the groove is designed.Results show that this model could be applicable in the design of the column envelope type SSC.展开更多
For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition ...For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.展开更多
In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD pr...In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated.展开更多
A 15-stage axial-flow compressor utilized in steel industry was studied in this paper. All the stator's stagger angles of the compressor are variable to ensure the multistage compressor operate effectively within ...A 15-stage axial-flow compressor utilized in steel industry was studied in this paper. All the stator's stagger angles of the compressor are variable to ensure the multistage compressor operate effectively within a wide range of flow rate and meanwhile satisfy the demand for sufficient pressure ratio, adiabatic efficiency and stall margin. Three in all different base-settings of stator's stagger angles were presented and commercial CFD software was applied to obtain the overall performance characteristics. The results showed that both of the optimized base-settings improved the performances both in summer and winter conditions, although the adiabatic efficiency was somewhat decreased. Taking incidence angle and stage loading into consideration, differences among the three cases were analyzed in detail. On the basis of numerical computations, the performance could be effectively improved through adjusting the base-setting of stator's stagger angles.展开更多
Numerical method was applied to the unsteady flow simulation at the mid span of a two-stage low speed compressor,and the blade boundary layer flow under rotor/stator interaction was investigated.By the model of wake/b...Numerical method was applied to the unsteady flow simulation at the mid span of a two-stage low speed compressor,and the blade boundary layer flow under rotor/stator interaction was investigated.By the model of wake/boundary layer interaction provided in this paper,the simulated blade frictional force and the boundary layer turbulent kinetic energy,the influence of wake/potential flow interaction on the blade boundary layer flow was analyzed in detail.The results show that under the condition of rotor/stator interaction,the wake is able to induce the stator laminar boundary layer flow to develop into turbulent flow within a certain range of wake interaction.In the stator suction boundary layer,an undisturbed region occurs behind the rotor wake,which extends the laminar flow range,and the wake with high turbulent intensity has the capability to control the boundary layer separation under adverse pressure gradient.展开更多
It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor r...It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.展开更多
An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics(CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The dist...An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics(CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor(as: Overall Temperature Distribution Factor-OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.展开更多
The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rota...The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rotating stall inception processes are observed. The research compressor is a 3-stage one and could change the stagger angle settings for rotor blades and stator vanes. Sixteen rotor blade/stator vane configuration patterns were tested by changing stagger angle for the stator vanes. By measurement of surface-pressure fluctuation, stall inception proc- esses are investigated and the measured pressure fluctuation data is used as a predictive signal for rotating stall. The experimental results show that the stall detection system applied to active hub-flap control in a single-stage compressor could be usefully applied to that in a 3-stage compressor with a more complex stall inception process.展开更多
基金the National Natural Science Foundation of China,Grant No.50776004Aeronautics Foundation of China,Grant No.04C51030the 111 Project,No,B07009
文摘This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow field within the rotor passage was simulated with the datum tip clearance of 0.356 mm at the design wheel speed of 17188.7 rpm. The simulation results are well consistent with the measurement results, which verified the numeri- cal method. Then the three-dimensional steady flow field within the rotor passage was simulated respectively with different axial non-uniform tip clearances. The calculation results showed that optimal axial non-uniform tip clearances could improve the compressor performance, while the efficiency and the pressure ratio of the com- pressor were increased. The flow mechanism is that the axial non-uniform tip clearance can weaken the tip leak- age vortex, blow down low-energy fluids in boundary layers and reduce both flow blockage and tip loss.
基金a part of the Deutsche Forschungsgemeinschaft Joint Research Project FOR-1066
文摘Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition modelling on the blade surfaces are presented. Steady three dimensional Reynolds Averaged Navier Stokes (RANS) simulations were performed to obtain the flow fields for the different configurations at different operating conditions using the RANS-Solver TRACE. The stage geometry and the multi-block structured grid were generated by G3DMESH and a grid sensitivity analysis was conducted. For the clearance gap region, a fully gridded special H-grid was chosen. Comparisons were made between the flow characteristic at design speed, representative for a transonic flow regime, and at 65% speed, representative for a subsonic flow regime. The computations were used to analyse the flow phenomena through the tip clearance region for the different configurations and their impact on the performance of the compressor stage.
基金Financial supports for the work presented are provided by National Natural Science Foundation of China (Project No: 50806073)China Postdoctoral Science Foundation (Project No: 20070420068)K C Wong Education Foundation, these supports are greatly appreciated
文摘The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with avail- able measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estima- tion of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub end- wall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.
文摘In this research, the centrifugal compressor of a turbocharger is investigated experimentally and numerically. Performance characteristics of the compressor were obtained experimentally by measurements of rotor speed and flow parameters at the inlet and outlet of the compressor. Three dimensional flow field in the impeller and dif- fuser was analyzed numerically using a full Navier-Stokes program with SST turbulence model. The performance characteristics of the compressor were obtained numerically, which were then compared with the experimental results. The comparison shows good agreement. Furthermore, the effect of area ratio and tip clearance on the performance parameters and flow field was stud- ied numerically. The impeller area ratio was changed by cutting the impeller exit axial width from an initial value of 4.1 mm to a final value of 5.1 mm, resulting in an area ratio from 0.792 to 0.965. For the rotor with exit axial width of 4.6 mm, performance was investigated for tip clearance of 0.0, 0.5 and 1.0 mm. Results of this simula- tion at design point showed that the compressor pressure ratio peaked at an area ratio of 0.792 while the effi- ciency peaked at a higher value of area ratio of 0.878. Also the increment of the tip clearance from 0 to 1 mm resulted in 20 percent efficiency decrease.
基金Project(No.2008AA05Z203)supported by the Hi-Tech Research & Development(863)Program of China
文摘A single screw compressor (SSC) is an important component found in many refrigeration systems.However,the durability is not so good because of the friction between its meshing pair.Therefore the column envelope meshing pair was pro-posed to prolong the operating life of SSCs,although it has not been applied to commercial refrigeration systems.To accelerate the industrial application,a mathematical model for analyzing the column envelope meshing pair is established based on the geometry and kinematics.Equations giving the flanks of column envelope grooves are obtained,and teeth flank meshing with the groove is designed.Results show that this model could be applicable in the design of the column envelope type SSC.
基金supported by the National Natural Sci-ence Foundation of China under Grant No.51106174
文摘For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.
文摘In the present paper,the design of a transonic centrifugal compressor stage with the inlet relative Mach number about 1.3 and detailed flow field investigation by three-dimensional CFD are described.Firstly the CFD program was validated by an experimental case.Then the preliminary aerodynamic design of stage completed through in-house one-dimensional code.Three types of impellers and two sets of stages were computed and analyzed.It can be found that the swept shape of leading edge has prominent influence on the performance and can enlarge the flow range.Similarly,the performance of the stage with swept impeller is better than others.The total pressure ratio and adiabatic efficiency of final geometry achieve 7:1 and 80% respectively.The vane diffuser with same airfoils along span increases attack angle at higher span,and the local flow structure and performance is deteriorated.
文摘A 15-stage axial-flow compressor utilized in steel industry was studied in this paper. All the stator's stagger angles of the compressor are variable to ensure the multistage compressor operate effectively within a wide range of flow rate and meanwhile satisfy the demand for sufficient pressure ratio, adiabatic efficiency and stall margin. Three in all different base-settings of stator's stagger angles were presented and commercial CFD software was applied to obtain the overall performance characteristics. The results showed that both of the optimized base-settings improved the performances both in summer and winter conditions, although the adiabatic efficiency was somewhat decreased. Taking incidence angle and stage loading into consideration, differences among the three cases were analyzed in detail. On the basis of numerical computations, the performance could be effectively improved through adjusting the base-setting of stator's stagger angles.
文摘Numerical method was applied to the unsteady flow simulation at the mid span of a two-stage low speed compressor,and the blade boundary layer flow under rotor/stator interaction was investigated.By the model of wake/boundary layer interaction provided in this paper,the simulated blade frictional force and the boundary layer turbulent kinetic energy,the influence of wake/potential flow interaction on the blade boundary layer flow was analyzed in detail.The results show that under the condition of rotor/stator interaction,the wake is able to induce the stator laminar boundary layer flow to develop into turbulent flow within a certain range of wake interaction.In the stator suction boundary layer,an undisturbed region occurs behind the rotor wake,which extends the laminar flow range,and the wake with high turbulent intensity has the capability to control the boundary layer separation under adverse pressure gradient.
基金National Natural Science Foundation of China(Project No:50806073)
文摘It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.
基金supported by National Natural Science Foundation of China with project No.51406202
文摘An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics(CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor(as: Overall Temperature Distribution Factor-OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.
基金a Grant-in-Aid for Scientific Research through grant number 17560162 from Japanese Society for the Promotion of Science
文摘The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rotating stall inception processes are observed. The research compressor is a 3-stage one and could change the stagger angle settings for rotor blades and stator vanes. Sixteen rotor blade/stator vane configuration patterns were tested by changing stagger angle for the stator vanes. By measurement of surface-pressure fluctuation, stall inception proc- esses are investigated and the measured pressure fluctuation data is used as a predictive signal for rotating stall. The experimental results show that the stall detection system applied to active hub-flap control in a single-stage compressor could be usefully applied to that in a 3-stage compressor with a more complex stall inception process.