The deformation fixation of the compressive Populus ussuriensis and Larix gmelinii solid wood was studied in this paper. Dynamic thermo-mechanical analyzer was used to evaluate the change of the treated wood on differ...The deformation fixation of the compressive Populus ussuriensis and Larix gmelinii solid wood was studied in this paper. Dynamic thermo-mechanical analyzer was used to evaluate the change of the treated wood on different position (compare with the non-compressive control wood). The internal mechanism of compressive solid wood and compressive deformation fixation were discussed by analyzing the effect of steam treatment on dynamic thermo-mechanical parameters of the treated wood, such as loss modulus and loss tangent. The tendency of the wood components such as hemi-cellulose and lignin were also studied in this course. The results showed that with the increasing of surface distance, loss modulus and loss angle tangent decreased in glass state area, the initial glass transition temperature decreased obviously at 0.5 cm away from the surface. So the deformation fixation of the compressive wood is due to the lower molecule weight of lignin and the failure of creep recovery.展开更多
The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strai...The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.展开更多
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st...Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.展开更多
The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and nume...The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models.展开更多
Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when ...Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.展开更多
A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of...A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of TiNi/AlSi composite is due to the increase of effective carrying area after infiltrating Al-12%Si alloy,while the high damping capacity is contributed to TiNi carcass,Al-12%Si filling material and micro- slipping at the interface.展开更多
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
Hot compression behavior of Al6061/Al2O3nanocomposite was investigated in the temperature range of350-500°C andthe strain rate range of0.0005-0.5s-1,in order to determine the optimum conditions for the hot workab...Hot compression behavior of Al6061/Al2O3nanocomposite was investigated in the temperature range of350-500°C andthe strain rate range of0.0005-0.5s-1,in order to determine the optimum conditions for the hot workability of nanocomposite.Theactivation energy of285kJ/mol for the hot compression test is obtained by using hyperbolic sine function.By means of dynamicmaterial model(DMM)and the corresponding processing map,safe zone for the hot workability of AA6061/Al2O3is recognized attemperature of450°C and strain rate of0.0005s-1and at temperature of500°C and the strain rate range of0.0005-0.5s-1,with themaximum power dissipation efficiency of38%.Elongated and kinked grains are observed at400°C and strain rate of0.5s-1due tothe severe deformation.展开更多
In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And t...In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites.展开更多
The stress-induced phase transformation in incompressible materials and the interfacial stability of multi-phase deformation were studied. The existence of multi-phase deformation was determined through exploring whet...The stress-induced phase transformation in incompressible materials and the interfacial stability of multi-phase deformation were studied. The existence of multi-phase deformation was determined through exploring whether the material would lose the strong ellipticity at some deformation gradient. Then, according to the stability criterion which is based on a quasi-static approach, the stability of the multi-phase deformation in incompressible materials was investigated by studying the growth/decay behaviour of the interface in the undeformed configuration when it is perturbed. At last, the way to define multi-phase deformation in incompressible materials was concluded and testified by a corresponding numerical example.展开更多
To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most diffe...To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.展开更多
Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress fie...Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress field of the composites and the whisker rotation process. It is found that with increasing the angle of whisker misalignment the whisker rotation angle decreases. Meanwhile, the mechanical behaviors of the composites such as work hardening or strain softening are affected by the whisker orientation and rotation during the hot compressive deformation. The predicted results are in agreement with the experimental results.展开更多
Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressiv...Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressive strength of the composites were measured.The effects of mass fraction of cenospheres on the microstructure and compressive properties were characterized.The results show that the cenospheres are uniformly distributed in the matrix and there is no sign of cenosphere cluster or residual pore.The densities of the composites are 1.85-1.92 g/cm 3 .By comparing with matrix,the compressive yield strength of the composites is improved,and the cenospheres is filled with Mg matrix alloy.SEM,XRD and EDX results of the composites show clear evidence of reaction product at cenosphere/matrix interface.On the basis of XRD and EDX,composition, structure and thermodynamic analysis,the main interfacial phase between the cenosphere and AZ91D Mg alloy was identified to be MgAl2O4.展开更多
An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers ...An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers were oriented along the extruded direction, is investigated. The results indicate that the hot compressive resistance of the TiBw/Ti composite is higher than that of the unreinforced Ti, and hot compressive resistance of the composite in the direction parallel to the whisker orientation is higher than that in the direction perpendicular to the whisker orientation. The hot compressive resistance of the composite increases with increasing strain rate and decreasing temperature. With increasing test temperature, the rate of the decrement of the compressive flow stress of the composite is higher than that of the unreinforced Ti. With increasing amount of compressive deformation, more and more TiB whiskers rotate and break during deformation. The rotation of the whiskers is easier at higher temperature, while, at lower temperature it becomes more difficult and whisker breakage becomes much more serious.展开更多
Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected w...Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected with the acoustic emission(AE) parameter in this work,which contributes to predicting the rock burst risk using AE technique.Primarily,a rock burst proneness index is proposed,and it just depends on the heterogeneous degree of rock material.Then,the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed.Finally,three kinds of rock samples,i.e.,granite,limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression,and the test data are fitted well with the theoretic formula.展开更多
Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests we...Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests were employed to establish the constitutive equation, in which the influence of strain was incorporated by considering the effect of strain on material constants Q, n, a, and lnA. The results show that the flow stress curves are dependent on the strain, strain rate and deformation temperature. They display typical dynamic recrystallization behavior and consist of three stages, i.e., hardening stage, softening stage and steady stage. The flow stress decreases with increasing the deformation temperature and decreasing the strain rate. In addition, the flow stress data predicted by the proposed constitutive model agree well with the corresponding experimental results, and the correlation coefficient and the average absolute relative error between them are 0.990 3 and 3.686%, respectively.展开更多
文摘The deformation fixation of the compressive Populus ussuriensis and Larix gmelinii solid wood was studied in this paper. Dynamic thermo-mechanical analyzer was used to evaluate the change of the treated wood on different position (compare with the non-compressive control wood). The internal mechanism of compressive solid wood and compressive deformation fixation were discussed by analyzing the effect of steam treatment on dynamic thermo-mechanical parameters of the treated wood, such as loss modulus and loss tangent. The tendency of the wood components such as hemi-cellulose and lignin were also studied in this course. The results showed that with the increasing of surface distance, loss modulus and loss angle tangent decreased in glass state area, the initial glass transition temperature decreased obviously at 0.5 cm away from the surface. So the deformation fixation of the compressive wood is due to the lower molecule weight of lignin and the failure of creep recovery.
文摘The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.
基金Project(51271076)supported by the National Natural Science Foundation of China
文摘Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.
基金Project(2013DFR50330)supported by the International Cooperation Project of Science and Technology Ministry of China
文摘The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models.
基金the financial supports from the National Natural Science Foundation of China(No.52065009)the Joint Funds of the Science and Technology Foundation of Guizhou Province,China(No.20157219)the Science and Technology Planning Project of Guizhou Province,China(No.20191069).
文摘Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method.
文摘A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of TiNi/AlSi composite is due to the increase of effective carrying area after infiltrating Al-12%Si alloy,while the high damping capacity is contributed to TiNi carcass,Al-12%Si filling material and micro- slipping at the interface.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
文摘Hot compression behavior of Al6061/Al2O3nanocomposite was investigated in the temperature range of350-500°C andthe strain rate range of0.0005-0.5s-1,in order to determine the optimum conditions for the hot workability of nanocomposite.Theactivation energy of285kJ/mol for the hot compression test is obtained by using hyperbolic sine function.By means of dynamicmaterial model(DMM)and the corresponding processing map,safe zone for the hot workability of AA6061/Al2O3is recognized attemperature of450°C and strain rate of0.0005s-1and at temperature of500°C and the strain rate range of0.0005-0.5s-1,with themaximum power dissipation efficiency of38%.Elongated and kinked grains are observed at400°C and strain rate of0.5s-1due tothe severe deformation.
文摘In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites.
基金Supported by National Natural Science Foundation of China(No.10272079)the Joint Grant from National Natural Science Foundation of China andthe Royal Society, UK(No.10511130192) .
文摘The stress-induced phase transformation in incompressible materials and the interfacial stability of multi-phase deformation were studied. The existence of multi-phase deformation was determined through exploring whether the material would lose the strong ellipticity at some deformation gradient. Then, according to the stability criterion which is based on a quasi-static approach, the stability of the multi-phase deformation in incompressible materials was investigated by studying the growth/decay behaviour of the interface in the undeformed configuration when it is perturbed. At last, the way to define multi-phase deformation in incompressible materials was concluded and testified by a corresponding numerical example.
文摘To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50071008).
文摘Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress field of the composites and the whisker rotation process. It is found that with increasing the angle of whisker misalignment the whisker rotation angle decreases. Meanwhile, the mechanical behaviors of the composites such as work hardening or strain softening are affected by the whisker orientation and rotation during the hot compressive deformation. The predicted results are in agreement with the experimental results.
基金Project(2007KZ07)supported by Plans for Science and Technology of Changchun City,ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the 985 Project of Jilin University,China
文摘Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressive strength of the composites were measured.The effects of mass fraction of cenospheres on the microstructure and compressive properties were characterized.The results show that the cenospheres are uniformly distributed in the matrix and there is no sign of cenosphere cluster or residual pore.The densities of the composites are 1.85-1.92 g/cm 3 .By comparing with matrix,the compressive yield strength of the composites is improved,and the cenospheres is filled with Mg matrix alloy.SEM,XRD and EDX results of the composites show clear evidence of reaction product at cenosphere/matrix interface.On the basis of XRD and EDX,composition, structure and thermodynamic analysis,the main interfacial phase between the cenosphere and AZ91D Mg alloy was identified to be MgAl2O4.
文摘An in-situ TiB whisker reinforced Ti matrix (TiBw/Ti) composite is fabricated by powder metallurgy technique followed by hot extrusion. Hot compressive deformation behavior of the composite, in which the TiB whiskers were oriented along the extruded direction, is investigated. The results indicate that the hot compressive resistance of the TiBw/Ti composite is higher than that of the unreinforced Ti, and hot compressive resistance of the composite in the direction parallel to the whisker orientation is higher than that in the direction perpendicular to the whisker orientation. The hot compressive resistance of the composite increases with increasing strain rate and decreasing temperature. With increasing test temperature, the rate of the decrement of the compressive flow stress of the composite is higher than that of the unreinforced Ti. With increasing amount of compressive deformation, more and more TiB whiskers rotate and break during deformation. The rotation of the whiskers is easier at higher temperature, while, at lower temperature it becomes more difficult and whisker breakage becomes much more serious.
基金Project(2010CB226804)supported by the National Basic Research Program(973 Program)of ChinaProject(11202108)supported by the National Natural Science Foundation of ChinaProject(BK20130189)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected with the acoustic emission(AE) parameter in this work,which contributes to predicting the rock burst risk using AE technique.Primarily,a rock burst proneness index is proposed,and it just depends on the heterogeneous degree of rock material.Then,the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed.Finally,three kinds of rock samples,i.e.,granite,limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression,and the test data are fitted well with the theoretic formula.
基金Project(200804220021) supported by the Specialized Research Fund for Doctoral Program of Higher Education of China Project (Y2007F06) supported by the Natural Science Foundation of Shandong Province,China
文摘Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests were employed to establish the constitutive equation, in which the influence of strain was incorporated by considering the effect of strain on material constants Q, n, a, and lnA. The results show that the flow stress curves are dependent on the strain, strain rate and deformation temperature. They display typical dynamic recrystallization behavior and consist of three stages, i.e., hardening stage, softening stage and steady stage. The flow stress decreases with increasing the deformation temperature and decreasing the strain rate. In addition, the flow stress data predicted by the proposed constitutive model agree well with the corresponding experimental results, and the correlation coefficient and the average absolute relative error between them are 0.990 3 and 3.686%, respectively.