Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil...Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil feedstock(and to a minor extent from biomass);in consequence the present hydrogen gas on the market is containing non-negligible amounts of impurities that prevent its immediate usage in specialty chemistry or as an energy carrier in fuel cells, e.g. in transportation applications(cars, buses, trains, boats, etc.) that gradually spread on the planet. For these purposes, hydrogen must be of sufficient purity but also sufficiently compressed(at high pressures, typically 70 MPa), rendering purification and compression steps unavoidable in the hydrogen cycle. As shown in the first part of this contribution "Electrochemical hydrogen compression and purification versus competing technologies: Part I. pros and cons", electrochemical hydrogen compressors(EHCs), which enable both hydrogen purification and compression, exhibit many theoretical(thermodynamic) and practical(kinetics) advantages over their mechanical counterparts. However, in order to be competitive, EHCs must operate in very intensive conditions(high current density and low cell voltage) that can only be reached if their core materials, e.g. the membrane and the electrodes/electrocatalysts, are optimized. This contribution will particularly focus on the properties electrocatalysts must exhibit to be used in EHCs: they shall promote(very) fast hydrogen oxidation reaction(HOR) in presence of impurities, which implies that they are(very) tolerant to poisons as well. This consists of a prerequisite for the operation of the anode of an EHC used for the purification-compression of hydrogen, and the materials developed for poison-tolerance in the vast literature on low-temperature fuel cells, may not always satisfy these two criteria, as this contribution will review.展开更多
With the help of technique of integration within an ordered product of operators we can fully display the partial trace method to deduce some new density operators of light field. The general form of single-mode densi...With the help of technique of integration within an ordered product of operators we can fully display the partial trace method to deduce some new density operators of light field. The general form of single-mode density operator is derived in this way from a normalized two-mode generalized squeezed pure state density operator.展开更多
基金The authors thank the Auvergne Rhone-Alpes region for the funding of the PhD thesis of Marine TregaroPart of the work has been performed within the framework of the Centre of Excellence of Multifunctional Architectured Materials“CEMAM”no.ANR-10-LABX-44-01Both MT and MR make their PhD in the frame of the Eco-Sesa project,funded by IDEX Universite Grenoble Alpes.
文摘Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil feedstock(and to a minor extent from biomass);in consequence the present hydrogen gas on the market is containing non-negligible amounts of impurities that prevent its immediate usage in specialty chemistry or as an energy carrier in fuel cells, e.g. in transportation applications(cars, buses, trains, boats, etc.) that gradually spread on the planet. For these purposes, hydrogen must be of sufficient purity but also sufficiently compressed(at high pressures, typically 70 MPa), rendering purification and compression steps unavoidable in the hydrogen cycle. As shown in the first part of this contribution "Electrochemical hydrogen compression and purification versus competing technologies: Part I. pros and cons", electrochemical hydrogen compressors(EHCs), which enable both hydrogen purification and compression, exhibit many theoretical(thermodynamic) and practical(kinetics) advantages over their mechanical counterparts. However, in order to be competitive, EHCs must operate in very intensive conditions(high current density and low cell voltage) that can only be reached if their core materials, e.g. the membrane and the electrodes/electrocatalysts, are optimized. This contribution will particularly focus on the properties electrocatalysts must exhibit to be used in EHCs: they shall promote(very) fast hydrogen oxidation reaction(HOR) in presence of impurities, which implies that they are(very) tolerant to poisons as well. This consists of a prerequisite for the operation of the anode of an EHC used for the purification-compression of hydrogen, and the materials developed for poison-tolerance in the vast literature on low-temperature fuel cells, may not always satisfy these two criteria, as this contribution will review.
基金Supported by the President Foundation of Chinese Academy of Science and National Natural Science Foundation of China under Grant Nos.10775097 and 10874174
文摘With the help of technique of integration within an ordered product of operators we can fully display the partial trace method to deduce some new density operators of light field. The general form of single-mode density operator is derived in this way from a normalized two-mode generalized squeezed pure state density operator.