To alleviate the conflict between audibility and distortion in the conventional loudness compensation method, an adaptive multichannel loudness compensation method is proposed for hearing aids. The linear and wide dyn...To alleviate the conflict between audibility and distortion in the conventional loudness compensation method, an adaptive multichannel loudness compensation method is proposed for hearing aids. The linear and wide dynamic range compression (WDRC) methods are alternately employed according to the dynamic range of the band-passed signal and the hearing range (HR) of the patient. To further reduce the distortion caused by the WDRC and improve the output signal to noise ratio (SNR) under noise conditions, an adaptive adjustment of the compression ratio is presented. Experimental results demonstrate that the output SNR of the proposed method in babble noise is improved by at least 1.73 dB compared to the WDRC compensation method, and the average speech intelligibility is improved by 6.0% and 5. 7%, respectively, compared to the linear and WDRC compensation methods.展开更多
Atomic force microscope (AFM), as an important instrument in micro/nano operation, has been widely used to measure sampie's height information. However, the so called compression effect, due to force aroused from t...Atomic force microscope (AFM), as an important instrument in micro/nano operation, has been widely used to measure sampie's height information. However, the so called compression effect, due to force aroused from the contact of AFM tip with a sample surface, would result in imprecision of the surface's height measurement, i.e., the measured height is lower than expected. Up to now, there is not any effective and rapid method to attenuate this kind of measurement error. Thus, in this paper, an algorithm to obtain high accurate height measurement is proposed. Firstly, the concept of force curve is used to analyze the basic principle of the compression effect. Secondly, an automatic compensation method by fusing the height signal and the deflection signal is proposed. The proposed algorithm can also be used to obtain a surface elasticity image. Finally, in order to validate the proposed method, two experiments are conducted with respect to mufti-wall nano-carbon tubes on a silicon substrate and graphemes on a mica substrate.展开更多
This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a sig...This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.展开更多
基金The National Natural Science Foundation of China(No.61301219,61375028,61273266)the Natural Science Foundation of Jiangsu Province(No.BK20130241)+1 种基金the Fundamental Research Funds for the Central Universities(No.2242013K30010)the Science and Technology Program of Nantong(No.BK2014002)
文摘To alleviate the conflict between audibility and distortion in the conventional loudness compensation method, an adaptive multichannel loudness compensation method is proposed for hearing aids. The linear and wide dynamic range compression (WDRC) methods are alternately employed according to the dynamic range of the band-passed signal and the hearing range (HR) of the patient. To further reduce the distortion caused by the WDRC and improve the output signal to noise ratio (SNR) under noise conditions, an adaptive adjustment of the compression ratio is presented. Experimental results demonstrate that the output SNR of the proposed method in babble noise is improved by at least 1.73 dB compared to the WDRC compensation method, and the average speech intelligibility is improved by 6.0% and 5. 7%, respectively, compared to the linear and WDRC compensation methods.
基金supported by the CAS FEA International Partnership Program for Creative Research Teams
文摘Atomic force microscope (AFM), as an important instrument in micro/nano operation, has been widely used to measure sampie's height information. However, the so called compression effect, due to force aroused from the contact of AFM tip with a sample surface, would result in imprecision of the surface's height measurement, i.e., the measured height is lower than expected. Up to now, there is not any effective and rapid method to attenuate this kind of measurement error. Thus, in this paper, an algorithm to obtain high accurate height measurement is proposed. Firstly, the concept of force curve is used to analyze the basic principle of the compression effect. Secondly, an automatic compensation method by fusing the height signal and the deflection signal is proposed. The proposed algorithm can also be used to obtain a surface elasticity image. Finally, in order to validate the proposed method, two experiments are conducted with respect to mufti-wall nano-carbon tubes on a silicon substrate and graphemes on a mica substrate.
基金supported by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE(No.EP/E035027/1)the UK EPSRC Award to the EPSRC Centre for Doctoral Training in PDEs(No.EP/L015811/1)+1 种基金the National Natural Science Foundation of China(No.10728101)the Royal Society-Wolfson Research Merit Award(UK)
文摘This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.