To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres...To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.展开更多
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil...A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.展开更多
In this paper,an improved zerotree structure and a new coding procedure are adopted,which improve the reconstructed image qualities. Moreover, the lists in SPIHT are replaced by flag maps, and lifting scheme is adopte...In this paper,an improved zerotree structure and a new coding procedure are adopted,which improve the reconstructed image qualities. Moreover, the lists in SPIHT are replaced by flag maps, and lifting scheme is adopted to realize wavelet transform, which lowers the memory requirements and speeds up the ceding process. Experimental results show that the algorithm is more effective and efficient compared with SPIHT.展开更多
This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject...This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension.展开更多
This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MR...This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MRI method based on compressed sensing (CS) with multiple regularizations (two regularizations including total variation (TV) norm and L1 norm or three regularizations consisting of total variation, L1 norm and wavelet tree structure) is proposed in this paper, which is implemented by applying split augmented lagrangian shrinkage algorithm (SALSA). To solve magnetic resonance image reconstruction problems with linear combinations of total variation and L1 norm, we utilized composite spht denoising (CSD) to split the original complex problem into TV norm and L1 norm regularization subproblems which were simple and easy to be solved respectively in this paper. The reconstructed image was obtained from the weighted average of solutions from two subprohlems in an iterative framework. Because each of the splitted subproblems can be regarded as MRI model based on CS with single regularization, and for solving the kind of model, split augmented lagrange algorithm has advantage over existing fast algorithm such as fast iterative shrinkage thresholding(FIST) and two step iterative shrinkage thresholding (TWIST) in convergence speed. Therefore, we proposed to adopt SALSA to solve the subproblems. Moreover, in order to solve magnetic resonance image reconstruction problems with linear combinations of total variation, L1 norm and wavelet tree structure, we can split the original problem into three subproblems in the same manner, which can be processed by existing iteration scheme. A great deal of experimental results show that the proposed methods can effectively reconstruct the original image. Compared with existing algorithms such as TVCMRI, RecPF, CSA, FCSA and WaTMRI, the proposed methods have greatly improved the quality of the reconstructed images and have better visual effect.展开更多
基金The National Natural Science Foundation of China(No.51575256)the Fundamental Research Funds for the Central Universities(No.NP2015101,XZA16003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.
基金The National Basic Research Program of China(973Program)(No.2011CB707904)the National Natural Science Foundation of China(No.61201344,61271312,61073138)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023,20120092120036)the Natural Science Foundation of Jiangsu Province(No.BK2012329)
文摘A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.
基金Supported by Korea ETRI cooperationfoundation(12003121192202) .
文摘In this paper,an improved zerotree structure and a new coding procedure are adopted,which improve the reconstructed image qualities. Moreover, the lists in SPIHT are replaced by flag maps, and lifting scheme is adopted to realize wavelet transform, which lowers the memory requirements and speeds up the ceding process. Experimental results show that the algorithm is more effective and efficient compared with SPIHT.
基金Supported by the Natural Science Foundation of Jiangsu Province (No. BK2004151).
文摘This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension.
基金Natural Science Foundation of Chinagrant number:81371635+3 种基金Research Fund for the Doctoral Program of Higher Education of Chinagrant number:20120131110062Shandong Province Science and Technology Development Plangrant number:2013GGX10104
文摘This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MRI method based on compressed sensing (CS) with multiple regularizations (two regularizations including total variation (TV) norm and L1 norm or three regularizations consisting of total variation, L1 norm and wavelet tree structure) is proposed in this paper, which is implemented by applying split augmented lagrangian shrinkage algorithm (SALSA). To solve magnetic resonance image reconstruction problems with linear combinations of total variation and L1 norm, we utilized composite spht denoising (CSD) to split the original complex problem into TV norm and L1 norm regularization subproblems which were simple and easy to be solved respectively in this paper. The reconstructed image was obtained from the weighted average of solutions from two subprohlems in an iterative framework. Because each of the splitted subproblems can be regarded as MRI model based on CS with single regularization, and for solving the kind of model, split augmented lagrange algorithm has advantage over existing fast algorithm such as fast iterative shrinkage thresholding(FIST) and two step iterative shrinkage thresholding (TWIST) in convergence speed. Therefore, we proposed to adopt SALSA to solve the subproblems. Moreover, in order to solve magnetic resonance image reconstruction problems with linear combinations of total variation, L1 norm and wavelet tree structure, we can split the original problem into three subproblems in the same manner, which can be processed by existing iteration scheme. A great deal of experimental results show that the proposed methods can effectively reconstruct the original image. Compared with existing algorithms such as TVCMRI, RecPF, CSA, FCSA and WaTMRI, the proposed methods have greatly improved the quality of the reconstructed images and have better visual effect.