A new shape casting process,melt-conditioned high-pressure die-casting(MC-HPDC) was developed.In this process,liquid metal was conditioned under intensively forced convection provided by melt conditioning with advance...A new shape casting process,melt-conditioned high-pressure die-casting(MC-HPDC) was developed.In this process,liquid metal was conditioned under intensively forced convection provided by melt conditioning with advanced shear technology(MCAST) unit before being transferred to a conventional cold chamber high-pressure die-casting(HPDC) machine for shape casting. The effect of melt conditioning was investigated,which was carried out both above and below the liquidus of the alloy,on the microstructure and properties of a Mg-Al-Ca alloy(AZ91D+2%Ca(mass fraction) ,named as AZX912) .The results show that many coarse externally-solidified crystals(ESCs) can be observed in the centre of conventional HPDC samples,and hot tearing occurs at the inter-dendritic region because of the lack of feeding.With the melting conditioning,the MC-HPDC samples not only have considerably refined size of ESCs but also have significantly reduced cast defects,thus provide superior mechanical properties to conventional HPDC castings.The solidification behaviour of the alloy under different processing routes was also discussed.展开更多
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of...Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.展开更多
As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-r...As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.展开更多
A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation mea- sure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually ori...A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation mea- sure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation 11 reactor Loviisa WER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse APIO00, the Korean APR1400 as well as Chinese advanced PWR designs HPRIO00 and CAP1400. The most influential phe- nomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV). For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contrib- ute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.展开更多
According to the characters of poly-ether-ether-ketone (PEEK) plastic, the spinnerets with three kinds of different structure were designed. The effects of spinneret structure on the melt spinning conditions, melt flo...According to the characters of poly-ether-ether-ketone (PEEK) plastic, the spinnerets with three kinds of different structure were designed. The effects of spinneret structure on the melt spinning conditions, melt flow instability of the screw extrusion, and the performance of PEEK fibers were studied. The results show that the appropriate screw extrusion temperature is 370 385℃. The PEEK fibers extruded using the spinnerets with L/D=6, 8holes and 0.5mm in diameter have better performances. The performances of PEEK fibers are related to the dia- meter of the spinneret hole. Increasing the L/D value of the spinnerets can not always improve the surface quality and the performances of PEEK fibers. The extrusion pressure is about 50% of that of the spinneret with 12holes and 0.3mm in diameter.展开更多
A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In thi...A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In this paper, the valid informa-tion region is selected by the grey level interval, which is computed by the optimization of image quality evaluation model. The model is based on the histogram equalization and the grey level interval. Then, every valid region of images at different voltages is extracted and they are fused according their grey level transformation function. The fusion image contains completed struc-ture information of the component. The fusion experiment of a cylinder head shows the effectiveness of the presented method.展开更多
Objective: To establish and optimize an enhanced recovery after surgery (ERAS) program, for the classic posterior lumbar decompression and fusion (PLDF).Methods: 1.An ERAS for PLDF procedure during the perioperative p...Objective: To establish and optimize an enhanced recovery after surgery (ERAS) program, for the classic posterior lumbar decompression and fusion (PLDF).Methods: 1.An ERAS for PLDF procedure during the perioperative period had been designed. 2.A total of 155 patients (73 in the ERAS group and 82 in the traditional health care group) were analyzed, and their clinical outcomes were compared. The evaluation indexes included physiological function, postoperative visual analogue scale (VAS), pain score, postoperative complications. Results: ERAS significantly promoted early food-taking (7.93±2.15h vs 24.54 ± 5.72h, P < 0.00), early catheter removal (36.31 ± 8.42h vs 71.48 ± 13.75h, P < 0.00), early defecation (3.80 ± 1.3 days vs 5.3±1.41 days, P < 0.00);reduced the incidence of urinary tract infection (2.7% vs 9.7% P = 0.01) and shorter hospital stay (3.80 ± 1.04 days vs 7.29±1.62 days, P < 0.00), while no difference between the two groups in vomiting, lung infection, wound bleeding and infection. Conclusion: ERAS for PLDF can facilitate the recovery of physiological function, reduce postoperative pain, reduce operative complications and morbidity after surgery and contribute to a shorter hospital stay. Further research is needed to optimize the process.展开更多
To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water content...To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.展开更多
The LIVE (Late In-Vessel Phase Experiments) test program investigates in-vessel melt pool behaviour and cooling strategies for in-vessel corium retention during severe accidents in light water reactors (LWR). The ...The LIVE (Late In-Vessel Phase Experiments) test program investigates in-vessel melt pool behaviour and cooling strategies for in-vessel corium retention during severe accidents in light water reactors (LWR). The main part of the LIVE facility is a 1:5 scaled semi-spherical lower head of a typical pressurized water reactor. Up to now, LIVE experiments have been performed in different initial external cooling conditions, melt volumes and internal heat generations. At present the well-known simulant material KNO3-NaNO3 in non-eutectic composition (80 mole% KNO3-20 mole% NaNO3) and in eutectic composition (50 mole% KNO3- 50 mole% NaNO3) is used in the live program. The 3D heat flux distribution through vessel wall, melt pool temperature, crust thickness and the pool melt composition can be measured or determined. Extensive results have been obtained concerning the melt pool thermal hydraulic behaviour in transient and in steady state conditions.展开更多
This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, an...This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, and then pressed to fill cavity by an upper mold being lowered down. For complex liquid flow during pressing, the liquid's pressure changing inside vertical path with various contraction and expansion geometries is newly modeled via the unstationary Bernoulli equation. The mathematical model is derived for a control design of pressing. To conduct the pressing velocity design algorithm, an unknown parameter of proposed model considering viscous flow is identified by using CFD (Computational Fluid Dynamics) with heat flow calculation. Control performance using a multi-switching velocity pattern is confirmed as an effective control design using the pressure model, because the pressure fluctuation has discontinuous variation points. Substituting detailed information for mold shape, poured volume and initial temperature into a developed control input generator, an optimum pressing velocity design and a robust design for defect-free production are proposed by the design algorithm based on the construction of an inverse system comprised of the sequential switching from higher to lower speed. Consequently, the effectiveness of the pressing control with reasonable pressure suppression has been demonstrated through CFD.展开更多
We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sam- piing for compressive sensing imaging. First, source images are compressed by compressive sensing, to facili...We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sam- piing for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By com- positing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas's and Piella's metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best per- formance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.展开更多
基金Project(2007CB613704) supported by the National Basic Research Program of China
文摘A new shape casting process,melt-conditioned high-pressure die-casting(MC-HPDC) was developed.In this process,liquid metal was conditioned under intensively forced convection provided by melt conditioning with advanced shear technology(MCAST) unit before being transferred to a conventional cold chamber high-pressure die-casting(HPDC) machine for shape casting. The effect of melt conditioning was investigated,which was carried out both above and below the liquidus of the alloy,on the microstructure and properties of a Mg-Al-Ca alloy(AZ91D+2%Ca(mass fraction) ,named as AZX912) .The results show that many coarse externally-solidified crystals(ESCs) can be observed in the centre of conventional HPDC samples,and hot tearing occurs at the inter-dendritic region because of the lack of feeding.With the melting conditioning,the MC-HPDC samples not only have considerably refined size of ESCs but also have significantly reduced cast defects,thus provide superior mechanical properties to conventional HPDC castings.The solidification behaviour of the alloy under different processing routes was also discussed.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB013503)the National Natural Science Foundation of China (Grant No. 51374112)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY112)
文摘Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour.
基金Project(50908234)supported by the National Natural Science Foundation of China
文摘As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.
文摘A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation mea- sure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation 11 reactor Loviisa WER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse APIO00, the Korean APR1400 as well as Chinese advanced PWR designs HPRIO00 and CAP1400. The most influential phe- nomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV). For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contrib- ute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.
文摘According to the characters of poly-ether-ether-ketone (PEEK) plastic, the spinnerets with three kinds of different structure were designed. The effects of spinneret structure on the melt spinning conditions, melt flow instability of the screw extrusion, and the performance of PEEK fibers were studied. The results show that the appropriate screw extrusion temperature is 370 385℃. The PEEK fibers extruded using the spinnerets with L/D=6, 8holes and 0.5mm in diameter have better performances. The performances of PEEK fibers are related to the dia- meter of the spinneret hole. Increasing the L/D value of the spinnerets can not always improve the surface quality and the performances of PEEK fibers. The extrusion pressure is about 50% of that of the spinneret with 12holes and 0.3mm in diameter.
基金National Natural Science Foundation of China(No.61227003,No.61301259,No.61471325and No.61571404)Natural Science Foundation of Shanxi Province(No.2015021099)
文摘A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In this paper, the valid informa-tion region is selected by the grey level interval, which is computed by the optimization of image quality evaluation model. The model is based on the histogram equalization and the grey level interval. Then, every valid region of images at different voltages is extracted and they are fused according their grey level transformation function. The fusion image contains completed struc-ture information of the component. The fusion experiment of a cylinder head shows the effectiveness of the presented method.
文摘Objective: To establish and optimize an enhanced recovery after surgery (ERAS) program, for the classic posterior lumbar decompression and fusion (PLDF).Methods: 1.An ERAS for PLDF procedure during the perioperative period had been designed. 2.A total of 155 patients (73 in the ERAS group and 82 in the traditional health care group) were analyzed, and their clinical outcomes were compared. The evaluation indexes included physiological function, postoperative visual analogue scale (VAS), pain score, postoperative complications. Results: ERAS significantly promoted early food-taking (7.93±2.15h vs 24.54 ± 5.72h, P < 0.00), early catheter removal (36.31 ± 8.42h vs 71.48 ± 13.75h, P < 0.00), early defecation (3.80 ± 1.3 days vs 5.3±1.41 days, P < 0.00);reduced the incidence of urinary tract infection (2.7% vs 9.7% P = 0.01) and shorter hospital stay (3.80 ± 1.04 days vs 7.29±1.62 days, P < 0.00), while no difference between the two groups in vomiting, lung infection, wound bleeding and infection. Conclusion: ERAS for PLDF can facilitate the recovery of physiological function, reduce postoperative pain, reduce operative complications and morbidity after surgery and contribute to a shorter hospital stay. Further research is needed to optimize the process.
基金Project(2016ZGHJ/XZHTL-YQSC-26)supported by the Key Scientific Research Project of China Gold GroupProject(SQ2019QZKK2806)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,China+1 种基金Project(300102268716)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LHKA-G201701)supported by the Science and Technology Project of Yalong River Hydropower Development Company,China。
文摘To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.
文摘The LIVE (Late In-Vessel Phase Experiments) test program investigates in-vessel melt pool behaviour and cooling strategies for in-vessel corium retention during severe accidents in light water reactors (LWR). The main part of the LIVE facility is a 1:5 scaled semi-spherical lower head of a typical pressurized water reactor. Up to now, LIVE experiments have been performed in different initial external cooling conditions, melt volumes and internal heat generations. At present the well-known simulant material KNO3-NaNO3 in non-eutectic composition (80 mole% KNO3-20 mole% NaNO3) and in eutectic composition (50 mole% KNO3- 50 mole% NaNO3) is used in the live program. The 3D heat flux distribution through vessel wall, melt pool temperature, crust thickness and the pool melt composition can be measured or determined. Extensive results have been obtained concerning the melt pool thermal hydraulic behaviour in transient and in steady state conditions.
文摘This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, and then pressed to fill cavity by an upper mold being lowered down. For complex liquid flow during pressing, the liquid's pressure changing inside vertical path with various contraction and expansion geometries is newly modeled via the unstationary Bernoulli equation. The mathematical model is derived for a control design of pressing. To conduct the pressing velocity design algorithm, an unknown parameter of proposed model considering viscous flow is identified by using CFD (Computational Fluid Dynamics) with heat flow calculation. Control performance using a multi-switching velocity pattern is confirmed as an effective control design using the pressure model, because the pressure fluctuation has discontinuous variation points. Substituting detailed information for mold shape, poured volume and initial temperature into a developed control input generator, an optimum pressing velocity design and a robust design for defect-free production are proposed by the design algorithm based on the construction of an inverse system comprised of the sequential switching from higher to lower speed. Consequently, the effectiveness of the pressing control with reasonable pressure suppression has been demonstrated through CFD.
基金supported by the National S&T Major Program(No.9140A1550212 JW01047)the ‘Twelfth Five’ Preliminary Research Project of PLA(No.402040202)
文摘We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sam- piing for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By com- positing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas's and Piella's metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best per- formance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.