The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual s...The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality.展开更多
In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and ...In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.展开更多
Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important g...Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.展开更多
Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressiv...Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressive strength of jointed rock mass varies with the number of natural joints and inclination of natural joints. As the number of natural joints in rock mass increases, the anisotropy becomes less and less. It is justifiable to treat approximately rock mass containing six or more natural joints instead of four or more joints that was described in literature of Hoek and Brown as isotropy.展开更多
Hydraulic fracturing is one of the efficient means for the abundant low-permeability CBM (coal-bed methane) reserves in China, however, due to the unique features of coal seams (i.e., low temperature, strong adsorp...Hydraulic fracturing is one of the efficient means for the abundant low-permeability CBM (coal-bed methane) reserves in China, however, due to the unique features of coal seams (i.e., low temperature, strong adsorption and abnormal development of natural fracture systems) as compared with the conventional reservoirs, the fractures propagate is difficult and the risk of damage to coal seam itself and the hydraulic fractures would be extremely high in the course of fracturing. As a result, losses would be suffered on the post-frac production of CBM wells.With the mean of numerical simulation, in this paper, the main factors have impact on the post-frac results as well as the extent to which the impact is brought were researched, and the technical solutions for the improvement of the fracturing performance was put forwards.展开更多
At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and ...At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5-20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152~, 74~ and 8~, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 kin. The co-seismic rupture mainly concentrates at depths of 3-13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 660-89~ from northwest to southeast and the average dip angle measures -84~. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.展开更多
It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element m...It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.展开更多
基金The financial supports from the National Natural Science Foundation of China (No.50674083)the Eleventh Five-Year Plan of National Scientific and Technological Support of China (No.2008BAB36 B07)the Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality.
基金financial support from the National Basic Research Program of China (No.2005CB221500)the National Natural Science Foundation of China (Nos.50534049,50674087 and 50974107)the Natural Science Foundation of Jiangsu Province (No.BK2007029)
文摘In order to explain the mechanism for gas outburst, the process of evolving fractures in coal seams is described using system dynamics with variable boundaries. We discuss the failure modes of coal containing gas and then established the flow rules after failure. The condition under which states of deformation convert is presented and the manner in which these convert is proposed. In the end, the process of gas outbursts is explained in detail. It shows that a gas outburst is a process in which the boundaries of coal seams are variable because of coal failure. If the fractures are not connected or even closed owing to coal/rock stress, fractured zones will retain a certain level of carrying capacity because of the self-sealing gas pressure. When the accumulation of gas energy reaches its limit, coal seams will become unstable and gas outbursts take place.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(2009QL05)supported by the Fundamental Research Funds for the Central Universities of China
文摘Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.
基金Supported by the National 973 Planning Project(2007CB209404)the Doctoral Research Foundation of Dalian University(0302221)
文摘Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressive strength of jointed rock mass varies with the number of natural joints and inclination of natural joints. As the number of natural joints in rock mass increases, the anisotropy becomes less and less. It is justifiable to treat approximately rock mass containing six or more natural joints instead of four or more joints that was described in literature of Hoek and Brown as isotropy.
文摘Hydraulic fracturing is one of the efficient means for the abundant low-permeability CBM (coal-bed methane) reserves in China, however, due to the unique features of coal seams (i.e., low temperature, strong adsorption and abnormal development of natural fracture systems) as compared with the conventional reservoirs, the fractures propagate is difficult and the risk of damage to coal seam itself and the hydraulic fractures would be extremely high in the course of fracturing. As a result, losses would be suffered on the post-frac production of CBM wells.With the mean of numerical simulation, in this paper, the main factors have impact on the post-frac results as well as the extent to which the impact is brought were researched, and the technical solutions for the improvement of the fracturing performance was put forwards.
基金funded by the Seismological Bureau Spark Program Project(Grant No.XH15007)the National Natural Science Foundation of China(Grant Nos.41604058,41574057,41621091)the Sichuan-Yunnan National Seismological Monitoring and Prediction Experimental Station Project(Grant No.2016CESE0204)
文摘At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5-20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152~, 74~ and 8~, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 kin. The co-seismic rupture mainly concentrates at depths of 3-13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 660-89~ from northwest to southeast and the average dip angle measures -84~. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.
基金supported by the program for the OIT of Higher Learning Institutions of Shanxi,the National Natural Science Foundation of China(Grant Nos.11302143 and 11472185)the Natural Science Foundation of Shanxi(Grant No.2014021013)
文摘It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.