Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula...Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.展开更多
Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan coolin...Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan cooling system (ECHDFCS). The system was applied to a 50-wheel loader. We carried out the coolant temperature simulation using fluid modeling software FLOWMASTER, followed by laboratory experiments and road tests. The results show that ECHDFCS can adjust the cooling capability of the system automatically based on machine heat dissipation requirements. The coolant temperature is consequently remained within an appropriate range. The simulation results are consistent with the experiment results when the experiment is performed on the plain, but are different from the road tests in some investigated parameters on the plateau.展开更多
This paper presents some problems related to water quality and the condition of lakes in Romania, as well as methods for improving the quantity of oxygen dissolved in water. A method for water aeration and the install...This paper presents some problems related to water quality and the condition of lakes in Romania, as well as methods for improving the quantity of oxygen dissolved in water. A method for water aeration and the installation used to implement it are described and the associated advantages regarding the reduction in the level of eutrophication are highlighted. The hydraulic installation for improving the quality of water from lakes, basins, reservoirs or slow flowing rivers was designed and tested in our hydraulics laboratory during a research project. It is floatable, environmentally friendly, and energetically autonomous, being powered by photovoltaic panels, which together with rechargeable batteries can assure a continuous operation. This installation could also be used in early stages of wastewater treatment. Experimental results regarding the performance curves of the hydraulic installation are also presented.展开更多
To extend the operating speed range of a conventional configuration of FESS (flywheel energy storage system), an additional DC-DC boost converter is required between the machine and grid side converters to regulate ...To extend the operating speed range of a conventional configuration of FESS (flywheel energy storage system), an additional DC-DC boost converter is required between the machine and grid side converters to regulate the output voltage. This paper presents a new FESS based on three-phase boost inverter topology. The proposed system facilitates voltage boost capability directly in a single-stage. The main advantage of the three-phase boost inverter is the deployment of only six switches and undersized passive elements to obtain a boosted AC output voltage weighed against the input DC supply. In this paper, FESS based on boost inverter topology is modeled and simulated using MATLAB/S1MULINK. An experimental setup has been built for the three-phase boost inverter to present its boosting capability. The simulation and experimental results sustain the proposed configuration.展开更多
The paper describes experiments on formation of a plasma channel with imbedded B-field for transporting high power ion beam. The plasma was generated with a 5-turn loop inductive antenna driven by an H-bridge type RF ...The paper describes experiments on formation of a plasma channel with imbedded B-field for transporting high power ion beam. The plasma was generated with a 5-turn loop inductive antenna driven by an H-bridge type RF generator. The azimuthal B-field in the channel of 0.5-1.5 kG was formed by a pulsed current from external capacitor bank. Control of the hydrogen gas pressure was provided by an electromagnetic puffvalve. The paper describes experimental devices and results on the generated plasma parameters as function of RF frequency, antenna voltage, pulse duration and puffgas pressure. When operating at-1 kG B-field, ambient gas pressure in the range of few -10 mTorr, and 5 kV antenna voltage at resonant frequency of 150 kHz, the plasma density range was (3-7)×10^12 cm3 with a temperature of a few eV.展开更多
基金Project(51205421)supported by the National Natural Science Foundation of ChinaProject(2012M521647)supported by the Postdoctoral Science Foundation of China
文摘Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.
基金Funded by the Innovation Foundation of Guangzhou, P. R. China (No. 2005V42C0021)
文摘Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan cooling system (ECHDFCS). The system was applied to a 50-wheel loader. We carried out the coolant temperature simulation using fluid modeling software FLOWMASTER, followed by laboratory experiments and road tests. The results show that ECHDFCS can adjust the cooling capability of the system automatically based on machine heat dissipation requirements. The coolant temperature is consequently remained within an appropriate range. The simulation results are consistent with the experiment results when the experiment is performed on the plain, but are different from the road tests in some investigated parameters on the plateau.
文摘This paper presents some problems related to water quality and the condition of lakes in Romania, as well as methods for improving the quantity of oxygen dissolved in water. A method for water aeration and the installation used to implement it are described and the associated advantages regarding the reduction in the level of eutrophication are highlighted. The hydraulic installation for improving the quality of water from lakes, basins, reservoirs or slow flowing rivers was designed and tested in our hydraulics laboratory during a research project. It is floatable, environmentally friendly, and energetically autonomous, being powered by photovoltaic panels, which together with rechargeable batteries can assure a continuous operation. This installation could also be used in early stages of wastewater treatment. Experimental results regarding the performance curves of the hydraulic installation are also presented.
文摘To extend the operating speed range of a conventional configuration of FESS (flywheel energy storage system), an additional DC-DC boost converter is required between the machine and grid side converters to regulate the output voltage. This paper presents a new FESS based on three-phase boost inverter topology. The proposed system facilitates voltage boost capability directly in a single-stage. The main advantage of the three-phase boost inverter is the deployment of only six switches and undersized passive elements to obtain a boosted AC output voltage weighed against the input DC supply. In this paper, FESS based on boost inverter topology is modeled and simulated using MATLAB/S1MULINK. An experimental setup has been built for the three-phase boost inverter to present its boosting capability. The simulation and experimental results sustain the proposed configuration.
文摘The paper describes experiments on formation of a plasma channel with imbedded B-field for transporting high power ion beam. The plasma was generated with a 5-turn loop inductive antenna driven by an H-bridge type RF generator. The azimuthal B-field in the channel of 0.5-1.5 kG was formed by a pulsed current from external capacitor bank. Control of the hydrogen gas pressure was provided by an electromagnetic puffvalve. The paper describes experimental devices and results on the generated plasma parameters as function of RF frequency, antenna voltage, pulse duration and puffgas pressure. When operating at-1 kG B-field, ambient gas pressure in the range of few -10 mTorr, and 5 kV antenna voltage at resonant frequency of 150 kHz, the plasma density range was (3-7)×10^12 cm3 with a temperature of a few eV.