A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential w...A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata,the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden strata overhanging the goaf indicated by subsidence monitoring.展开更多
Wax-coated sands are a new category of synthetic soils, which are gradually becoming a reliable construction material. Because of their valuable drainage ability and mechanical properties, wax coated sandy soils are s...Wax-coated sands are a new category of synthetic soils, which are gradually becoming a reliable construction material. Because of their valuable drainage ability and mechanical properties, wax coated sandy soils are specifically applicable to pavement construction of horseracing tracks and sport fields. Although the mechanical and hydraulic properties of these synthetic soils are well-proven, there is still a lack of studies on how the soil samples behave differently when mixing with different wax fractions. Adding the wax affects permeability and compressibility of pure sand. Intensity of influences is a function of weight percentage of wax that has been added, and other physical and environmental factors. The effects of wax content on hydraulic properties(permeability), and mechanical properties(stress strain behavior, compressibility) of sandy soils based on a series of experimental efforts were investigated. Obtained experimental results infer that increasing the amount of wax up to 6% causes an about 50% increase in permeability, mainly because of the significant effect of wax in lowering the friction along with covering and filling the angular parts of particles' surfaces and forming rounded particles. In addition, wax-coated sands show a 20% to 60% decrease in confined compression modulus compared to non wax-coated sands.展开更多
The investigation on the cathode material of potassium ion batteries(PIBs),one of the most promising alternatives to lithium ion batteries,is of great significance.Potassium vanadium fluorophosphate(KVPO4F)with a high...The investigation on the cathode material of potassium ion batteries(PIBs),one of the most promising alternatives to lithium ion batteries,is of great significance.Potassium vanadium fluorophosphate(KVPO4F)with a high working voltage is an appealing cathode candidate for PIBs,while the poor cycling performance and low electronic conductivity dramatically hinder the application.Herein,a plum pudding model inspired three-dimensional amorphous carbon network modified KVPO4F composite(KVPO4F@3DC)is successfully designed in this study to tackle these problems.In the composite,KVPO4F particles are homogeneously wrapped by a layer of amorphous carbon and bridged by crosslinked large area carbon sheets.As the cathode for PIBs,the KVPO4F@3DC composite exhibits a high average operating voltage about 4.10 V with a super-high discharge capacity of 102.96 mAh g^-1 at 20 mA g^-1.An excellent long cycle stability with a capacity retention of 85.4%over 550 cycles at 500 mA g^-1 is achieved.In addition,it maintains 83.6%of its initial capacity at 50 mA g^-1 after 100 cycles at 55℃.The design of KVPO4F@3DC with plum pudding structure provides facilitative electron conductive network and stable electrode/electrode interface for electrode,successfully innovating an ultra-stable and high-performance cathode material for potassium ion batteries.展开更多
文摘A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata,the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden strata overhanging the goaf indicated by subsidence monitoring.
文摘Wax-coated sands are a new category of synthetic soils, which are gradually becoming a reliable construction material. Because of their valuable drainage ability and mechanical properties, wax coated sandy soils are specifically applicable to pavement construction of horseracing tracks and sport fields. Although the mechanical and hydraulic properties of these synthetic soils are well-proven, there is still a lack of studies on how the soil samples behave differently when mixing with different wax fractions. Adding the wax affects permeability and compressibility of pure sand. Intensity of influences is a function of weight percentage of wax that has been added, and other physical and environmental factors. The effects of wax content on hydraulic properties(permeability), and mechanical properties(stress strain behavior, compressibility) of sandy soils based on a series of experimental efforts were investigated. Obtained experimental results infer that increasing the amount of wax up to 6% causes an about 50% increase in permeability, mainly because of the significant effect of wax in lowering the friction along with covering and filling the angular parts of particles' surfaces and forming rounded particles. In addition, wax-coated sands show a 20% to 60% decrease in confined compression modulus compared to non wax-coated sands.
基金financially supported by the National Natural Science Foundation of China(51672078 and 21473052)Hunan University State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body Independent Research Project(71675004)Hunan Youth Talents(2016RS3025)。
文摘The investigation on the cathode material of potassium ion batteries(PIBs),one of the most promising alternatives to lithium ion batteries,is of great significance.Potassium vanadium fluorophosphate(KVPO4F)with a high working voltage is an appealing cathode candidate for PIBs,while the poor cycling performance and low electronic conductivity dramatically hinder the application.Herein,a plum pudding model inspired three-dimensional amorphous carbon network modified KVPO4F composite(KVPO4F@3DC)is successfully designed in this study to tackle these problems.In the composite,KVPO4F particles are homogeneously wrapped by a layer of amorphous carbon and bridged by crosslinked large area carbon sheets.As the cathode for PIBs,the KVPO4F@3DC composite exhibits a high average operating voltage about 4.10 V with a super-high discharge capacity of 102.96 mAh g^-1 at 20 mA g^-1.An excellent long cycle stability with a capacity retention of 85.4%over 550 cycles at 500 mA g^-1 is achieved.In addition,it maintains 83.6%of its initial capacity at 50 mA g^-1 after 100 cycles at 55℃.The design of KVPO4F@3DC with plum pudding structure provides facilitative electron conductive network and stable electrode/electrode interface for electrode,successfully innovating an ultra-stable and high-performance cathode material for potassium ion batteries.