3 D roll-forming for high strength steel sheets is a new technology at present.Double racks gear 3D roll forming machine developed by our research group can be used to perform variable cross section roll forming for h...3 D roll-forming for high strength steel sheets is a new technology at present.Double racks gear 3D roll forming machine developed by our research group can be used to perform variable cross section roll forming for high strength steel.In the paper,a dynamic model of 8-DOF double rack gear 3D roll-forming machine is established by the method of Lagrange equation.The expression of the angle acceleration of the system response is obtained by solving the dynamic equations.Through an actual engineering example,the dynamical characters of the 3D roll forming machine are revealed.The results can support the design of 3D roll forming machine.Meanwhile,the research will play an active role in the development of control system.展开更多
According to the concept of virtual bending force,a rational explanation for SHOHET's model was presented. Considering the deformation characters of the work rolls in four-high mill,the deformation model of the wo...According to the concept of virtual bending force,a rational explanation for SHOHET's model was presented. Considering the deformation characters of the work rolls in four-high mill,the deformation model of the work roll was regarded as a cantilever beam and new influence coefficients were deduced.The effect of the bending force was taken into account independently. Therefore,the contribution to work roll deflection caused by rolling load,rolling pressure between rolls and bending force can be got from the new formulas.To validate the accuracy of the formulas,the results obtained from the new formulas were compared with those from SHOHET's formulas.It is found that they highly coincide,which illustrates that the formulas are reliable.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
基金Supported by the National Science and Technology Supporting Plan Projects of China (No.2011BAG03B03).
文摘3 D roll-forming for high strength steel sheets is a new technology at present.Double racks gear 3D roll forming machine developed by our research group can be used to perform variable cross section roll forming for high strength steel.In the paper,a dynamic model of 8-DOF double rack gear 3D roll-forming machine is established by the method of Lagrange equation.The expression of the angle acceleration of the system response is obtained by solving the dynamic equations.Through an actual engineering example,the dynamical characters of the 3D roll forming machine are revealed.The results can support the design of 3D roll forming machine.Meanwhile,the research will play an active role in the development of control system.
基金Project(20050216007) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘According to the concept of virtual bending force,a rational explanation for SHOHET's model was presented. Considering the deformation characters of the work rolls in four-high mill,the deformation model of the work roll was regarded as a cantilever beam and new influence coefficients were deduced.The effect of the bending force was taken into account independently. Therefore,the contribution to work roll deflection caused by rolling load,rolling pressure between rolls and bending force can be got from the new formulas.To validate the accuracy of the formulas,the results obtained from the new formulas were compared with those from SHOHET's formulas.It is found that they highly coincide,which illustrates that the formulas are reliable.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.