In this paper, an efficient multigrid fictitious boundary method (MFBM) coupled with the FEM solver package FEATFLOW was used for the detailed simulation of incompressible viscous flows around one or more moving NAC...In this paper, an efficient multigrid fictitious boundary method (MFBM) coupled with the FEM solver package FEATFLOW was used for the detailed simulation of incompressible viscous flows around one or more moving NACA0012 airfoils. The calculations were carded on a fixed multigrid finite element mesh on which fluid equations were satisfied everywhere, and the airfoils were allowed to move freely through the mesh. The MFBM was employed to treat interactions between the fluid and the airfoils The motion of the airfoils was modeled by Newton-Euler equations. Numerical results of experiments verify that this method provides an efficient way to simulate incompressible viscous flows around moving airfoils.展开更多
This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" cond...This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.展开更多
基金Supported by National 863 Plan Project of Ministry of Science and Technology of China under Grant No. 2006AA09Z354National Natural Science Foundation of China under Grant No. 10672101.
文摘In this paper, an efficient multigrid fictitious boundary method (MFBM) coupled with the FEM solver package FEATFLOW was used for the detailed simulation of incompressible viscous flows around one or more moving NACA0012 airfoils. The calculations were carded on a fixed multigrid finite element mesh on which fluid equations were satisfied everywhere, and the airfoils were allowed to move freely through the mesh. The MFBM was employed to treat interactions between the fluid and the airfoils The motion of the airfoils was modeled by Newton-Euler equations. Numerical results of experiments verify that this method provides an efficient way to simulate incompressible viscous flows around moving airfoils.
基金supported by National Natural Science Foundation of China (Grant No. 11471334)Program for New Century Excellent Talents in University (Grant No. NCET-12-0085)
文摘This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.