A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteri...A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.展开更多
Near-liquidus cast ingot was reheated to semi-solid firstly, and then a bracket of motor was prepared by die casting the semi-solid ingot into mould. The microstructural characteristics of AZ91D alloy in these process...Near-liquidus cast ingot was reheated to semi-solid firstly, and then a bracket of motor was prepared by die casting the semi-solid ingot into mould. The microstructural characteristics of AZ91D alloy in these processes were investigated. In the process of near-liquidus casting, primary α-Mg grains tend to be rosette-like because of the increase of plentiful quasi-solid atom clusters in molten alloy with the decrease of pouring temperature. These rosette-like a-Mg grains in ingots fabricated by near-liquidus casting are fused off and refined into near-globular structure owing to the solute diffusion mechanism and the minimum surface energy mechanism during reheating. After semi-solid die-casting, a-Mg grains, located in biscuit, impact and connect with each other; α-Mg grains, located in inner gate, congregate together; while α-Mg grains, located in component, distribute uniformly and become into globularity or strip. Because the inner gate limits the flowing of semi-solid slurry, and the pressure acted on the semi-solid slurry decreases gradually along the filling direction of semi-solid slurry in Cavity, microstructural segregation of unmelted a-Mg grains appears along this direction. Shrinkage holes in casting are caused by two different reasons. For biscuit, the shrinkage holes are caused by the blocked access of feeding liquid to the shrinkage zone for the agglomerated unmelted α-Mg grains. For component, the shrinkage holes are caused by the lack of feeding of liquid alloy.展开更多
The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated ar...The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated are gas and shrinkage porosity. In the experiments, semi-solid slurry was prepared by the gas-induced semi-solid (GISS) technique. Then, the slurry was transferred to the shot sleeve and injected into the die. The die and shot sleeve temperatures were kept at 180 ℃ and 250 ℃, respectively. The results show that the samples produced by the GISS die casting give little porosity, no blister and uniform microstructure. From all the results, it can be concluded that the GISS process is feasible to apply in the ADC12 aluminum die casting process. In addition, the GISS process can give improved properties such as decreased porosity and increased microstructure uniformity.展开更多
基金Project(2006CB605203) supported by National Basic Research Program of ChinaProject(2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject(2006BAE04B09-4) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.
基金Project(2008BB4177) supported by the Natural Science Foundation of Chongqing City, China
文摘Near-liquidus cast ingot was reheated to semi-solid firstly, and then a bracket of motor was prepared by die casting the semi-solid ingot into mould. The microstructural characteristics of AZ91D alloy in these processes were investigated. In the process of near-liquidus casting, primary α-Mg grains tend to be rosette-like because of the increase of plentiful quasi-solid atom clusters in molten alloy with the decrease of pouring temperature. These rosette-like a-Mg grains in ingots fabricated by near-liquidus casting are fused off and refined into near-globular structure owing to the solute diffusion mechanism and the minimum surface energy mechanism during reheating. After semi-solid die-casting, a-Mg grains, located in biscuit, impact and connect with each other; α-Mg grains, located in inner gate, congregate together; while α-Mg grains, located in component, distribute uniformly and become into globularity or strip. Because the inner gate limits the flowing of semi-solid slurry, and the pressure acted on the semi-solid slurry decreases gradually along the filling direction of semi-solid slurry in Cavity, microstructural segregation of unmelted a-Mg grains appears along this direction. Shrinkage holes in casting are caused by two different reasons. For biscuit, the shrinkage holes are caused by the blocked access of feeding liquid to the shrinkage zone for the agglomerated unmelted α-Mg grains. For component, the shrinkage holes are caused by the lack of feeding of liquid alloy.
基金funded by the Royal Golden Jubilee Ph.D. Program (Grant No.PHD/0173/2550)the Thai Research Fund (Contract number MRG5280215)Prince of Songkla University (Contract No.AGR530031M)
文摘The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated are gas and shrinkage porosity. In the experiments, semi-solid slurry was prepared by the gas-induced semi-solid (GISS) technique. Then, the slurry was transferred to the shot sleeve and injected into the die. The die and shot sleeve temperatures were kept at 180 ℃ and 250 ℃, respectively. The results show that the samples produced by the GISS die casting give little porosity, no blister and uniform microstructure. From all the results, it can be concluded that the GISS process is feasible to apply in the ADC12 aluminum die casting process. In addition, the GISS process can give improved properties such as decreased porosity and increased microstructure uniformity.