The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated ar...The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated are gas and shrinkage porosity. In the experiments, semi-solid slurry was prepared by the gas-induced semi-solid (GISS) technique. Then, the slurry was transferred to the shot sleeve and injected into the die. The die and shot sleeve temperatures were kept at 180 ℃ and 250 ℃, respectively. The results show that the samples produced by the GISS die casting give little porosity, no blister and uniform microstructure. From all the results, it can be concluded that the GISS process is feasible to apply in the ADC12 aluminum die casting process. In addition, the GISS process can give improved properties such as decreased porosity and increased microstructure uniformity.展开更多
基金funded by the Royal Golden Jubilee Ph.D. Program (Grant No.PHD/0173/2550)the Thai Research Fund (Contract number MRG5280215)Prince of Songkla University (Contract No.AGR530031M)
文摘The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated are gas and shrinkage porosity. In the experiments, semi-solid slurry was prepared by the gas-induced semi-solid (GISS) technique. Then, the slurry was transferred to the shot sleeve and injected into the die. The die and shot sleeve temperatures were kept at 180 ℃ and 250 ℃, respectively. The results show that the samples produced by the GISS die casting give little porosity, no blister and uniform microstructure. From all the results, it can be concluded that the GISS process is feasible to apply in the ADC12 aluminum die casting process. In addition, the GISS process can give improved properties such as decreased porosity and increased microstructure uniformity.