Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. T...Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. The effects of Sur- face tension, surfactant concentration, foam/solution height ratio and air flow rate on the separation performance were investigated, and the results showed that good en- richments and recoveries can be achieved for bovine serum albumin operated at el- evated pressures. Especially the size of bubbles generated by the stainless steel sparger was smaller at higher pressures which is favorable to the foam separation process. Furthermore, the separation mechanism of bovine serum albumin operated at elevated pressure was also discussed.展开更多
This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during t...This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during the deep drawing process, was established. Since it is presented in a dimensionless form, it may be applied for both conventional and micro deep drawing. Cylindrical cup deep drawing was taken as an example to show the dimensionless process design method. In addition, the size effects should be taken into account. Two kinds of size effects on micro deep drawing were investigated, which can be explained by surface layer model and strain gradient model. Numerical simulations were carried out to compare the strain distribution with or without consideration of size effect.展开更多
The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic ...The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.展开更多
文摘Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. The effects of Sur- face tension, surfactant concentration, foam/solution height ratio and air flow rate on the separation performance were investigated, and the results showed that good en- richments and recoveries can be achieved for bovine serum albumin operated at el- evated pressures. Especially the size of bubbles generated by the stainless steel sparger was smaller at higher pressures which is favorable to the foam separation process. Furthermore, the separation mechanism of bovine serum albumin operated at elevated pressure was also discussed.
基金The National Natural Science Foundation of China (No50275059, 50005008)
文摘This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during the deep drawing process, was established. Since it is presented in a dimensionless form, it may be applied for both conventional and micro deep drawing. Cylindrical cup deep drawing was taken as an example to show the dimensionless process design method. In addition, the size effects should be taken into account. Two kinds of size effects on micro deep drawing were investigated, which can be explained by surface layer model and strain gradient model. Numerical simulations were carried out to compare the strain distribution with or without consideration of size effect.
文摘The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.