期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
畜牧场污水处理的主要方法
1
作者 范绪和 《当代畜禽养殖业》 2002年第6期39-39,共1页
畜牧场污水处理的基本方法,按其基本原理可分为物理处理法、化学处理法、物理化学处理法和生物处理法等。单独使用任何一种方法,都不能使畜牧场高浓度的污水得到有效的处理(达到排放标准)。所以必须进行系统处理。目前大型养殖场污水处... 畜牧场污水处理的基本方法,按其基本原理可分为物理处理法、化学处理法、物理化学处理法和生物处理法等。单独使用任何一种方法,都不能使畜牧场高浓度的污水得到有效的处理(达到排放标准)。所以必须进行系统处理。目前大型养殖场污水处理系统主要有如下几种。 1 展开更多
关键词 固液分离 理化处理系统 厌气池 发酵处理系统 土地处理系统 畜牧场 污水处理
下载PDF
Biogas by two-stage microbial anaerobic and semi-continuous digestion of Chinese cabbage waste 被引量:1
2
作者 Xiaoying Dong Lijie Shao +3 位作者 Yan Wang Wei Kou Yanxin Cao Dalei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第5期847-852,共6页
Anaerobic digestion of Chinese cabbage waste was investigated through a pilot-scale two-stage digester at a mesophilic temperature of 37 ℃. In the acidification digester, the main product was acetic acid, with the ma... Anaerobic digestion of Chinese cabbage waste was investigated through a pilot-scale two-stage digester at a mesophilic temperature of 37 ℃. In the acidification digester, the main product was acetic acid, with the maxi- mum concentration of 4289 mg·L^-1 on the fourth day, accounting for 50.32% of total volatile fatty acids. The oxidation reduction potential (ORP) and NH^+-N level decreased gradually with hydraulic retention time (HRT) of acidification. In the second digestion phase, the maximum methanogenic bacterial concentration reached 9.6 × 10^10ml^-1 at the organic loading rate (OLR) of 3.5-4 kg VS·m^-3, with corresponding HRT of 12-16 days. Accordingly, the optimal biogas production was 0.62 m^3· (kg VS)^-1, with methane content of 65%-68%;. ORP and NH4^+-N levels in the methanizer remained between -500 and -560 mV and 2000-4500mg· L^-1, respec- tively. Methanococcus and Methanosarcina served as the main methanogens in the anaerobic digester. 展开更多
关键词 Anaerobic digestion Semi-continuous Two-stage Biogas Chinese cabbage waste Microbial ecology
下载PDF
Design Biogas Production from Mixed Napier Pak Chong I/Food Waste at Thermophilic Temperature by Anaerobic Digestion in Cow Dung and Chicken Dung
3
作者 Lertluck Saitawee Kanokom Hussaro +1 位作者 Sombat Teekasap Noppadon Cheamsawat 《Journal of Energy and Power Engineering》 2014年第5期890-895,共6页
AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy ... AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy resoures. Biogas production by co-digestion of mixed Napier Pak Chong I and food waste at thermophilic temperature using anaerobic digestion in cow dung and chicken dung as the seed inoculums were investigated. The total reactor volume of the co-digester reactor was 7.94 m^3, which was equipped with pump, and it was operated continuously for the 20 days as a pilot scale at 50 ℃. The Napier Pak Chong I was cut into 2 mm sections, and the initial VS (volatile solids) was 30%. The initial VS of food waste were 70%. Two pilot-scale digesters filled with Napier Pak Chong I and food waste, which both digesters contained 476 kg of Napier Pak Chong I mixed 305 L of food waste, and 1305 L of water. There were carried out to investigate the optimum C/N (carbon to nitrogen) ratio for effective biogas production. The slurry raw materials provided sufficient buffering capacity to maintain appropriate pH values (between 7.0 and 8.0). Digester I was designed for 1.98 m^3 of cow dung as the seed inoculum while digester II was designed to establish 1.98 m^3 of chicken dung as the seed inoculum. Gas detector performs analysis gas production. The m^3/day in digester I and 1.86 m^3/day from digester II, resulting in added, respectively. Biogas production in digester I was directly experimental results indicate that total biogas production was 2.19 specific methane yields of 1.26 m^3 CH4/kgVS and 1.07 m^3 CH4/kgVS correlated with temperature. 展开更多
关键词 Biogas production napier pakchong I food wastes cow dung chicken dung inoculum.
下载PDF
Combustion of Renewable Biogas Fuels
4
作者 Chaouki Ghenai Isam Janajreh 《Journal of Energy and Power Engineering》 2015年第10期831-843,共13页
Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is ... Biogas fuel is a sustainable and renewable fuel produced from anaerobic digestion of organic matter. The biogas fuel is a flammable mixture of methane and carbon dioxide with low to medium calorific values. Biogas is an alternative to conventional fossil fuels and can be used for beating, transportation and power generation. CFD (computational fluid dynamic) analysis of the combustion performance and emissions of biogas fuel in gas turbine engines is presented in this study. The main objective of this study is to understand the impact of the variability in the biogas fuel compositions and lower heating values on the combustion process. Natural gas, biogas from anaerobic digester, landfill biogas, and natural gas/biogas mixture fuels combustion were investigated in this study. The CFD results show lower peak flame temperature and CO mole fractions inside the combustor and lower NOx emissions at the combustor exit for the biogas compared to natural gas fuel. The peak flame temperature decreases by 37% for the biogas landfill (COJCH4 = 0.89) and by 22% for the biogas anaerobic digester (CO2/CH4 = 0.54) compared to natural gas fuel combustion. The peak CO mole fraction inside the combustor decreases from 9.8 × 10-2 for natural gas fuel to 2.22 × 10-4 for biogas anaerobic digester and 1.32 × 10-7 for biogas landfill. The average NOx mole fraction at the combustor exit decreases from 1.13 × 10-5 for natural gas fuel to 0.40 × 10-6 for biogas anaerobic digester and 1.06 × 10-6 for biogas landfill. The presence of non-combustible constituents in the biogas reduces the temperature of the flame and consequently the NOx emissions. 展开更多
关键词 Anaerobic digestion BIOGAS non-premixed combustion NOx emissions CFD.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部