Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids...Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids (VFA) was proportional to the chemical oxygen demand (COD) loading rate.The yield of VFA was around 0.28 g VFA/g COD over the COD loading rate from 1.25 to 30 g COD·L -1 ·d -1 and the hydraulic retention time from 8.8 h to 24 h.Distribution of organic acids,the contents of propionic and butyric acids in the effluent in particular were also dependent on the COD loading rate.The thermophilic UASB reactor showed a stable performance on hydrolysis and acidogenesis of starch as well as suspended solid removal at short hydraulic retention times and high influent pH(10~11),during the operation of 110 d.展开更多
A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical me...A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.展开更多
The concept of anaerobic ammonium oxidation(ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile,th...The concept of anaerobic ammonium oxidation(ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile,the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite(CANON) have been developed,and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will ac-celerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process.展开更多
Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients a...Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse, Over the past few years, some wastewater treatment plants have tried to revamp themselves as "resource factories," enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side- stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.展开更多
Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(...Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates(50, 65, and 80 g·L-1) to produce biogas. The results indicated that the wheat straw pretreated with 80% moisture content and 4% ammonia achieved the highest methane yield of 199.7 ml·g-1(based on per unit volatile solids loaded), with shorter digestion time(T80) of 25 days at the loading rate of 65 g·L-1compared to untreated one. The main chemical compositions of wheat straw were also analyzed. The cellulose and hemicellulose contents were decomposed by 2%-20% and 26%-42%, respectively,while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.展开更多
A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflo...A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50 % inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia mtrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d.展开更多
Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen aft...Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment. Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%, 74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. Thc,dcmand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the inftuent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.展开更多
Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitr...Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than 1 mg·L-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg· L-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus removal decreased with 8 days SRT. When the SRT was restored to 16 days, however, the efficiency of phosphorus removal was higher than 90%.展开更多
The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test ...The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.展开更多
Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment ...Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.展开更多
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 ...A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentra- tions ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear supe- riority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microor- ganisms.展开更多
[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, an...[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement.展开更多
This paper presents the results obtained for the effluent dewatering properties of anaerobic digestion of secondary sludge (SS) and anaerobic co-digestion of mixture of this sludge with the distillery wastewater (D...This paper presents the results obtained for the effluent dewatering properties of anaerobic digestion of secondary sludge (SS) and anaerobic co-digestion of mixture of this sludge with the distillery wastewater (DW) under thermophilic (55±1 ℃), 5 L of working volume, three parallel lab-scale conditions. Its mixtures were prepared with a DW content of 25%and 50% and the C/N ratios of mixtures are 13.1 and 17.6, respectively. The effluent dewatering properties were evaluated under stable conditions which the biogas yield and the effluent pH were steady. The natural settleability, biogas yield, centrifugal dewatering, centrifugal supernatant turbidity and specific resistance filtration (SRF) were investigated. The results showed that the effluent dewatering properties of anaerobic co-digestion of mixtures between SS and DW were better than that of anaerobic digestion of SS alone. In the anaerobic digestion system with the feed were SS, mixture of SS and a DW content of 25%and 50% in order, the net biogas yield of secondary sludge in ADSA,ADSB and ADSC were 0.42 0.507 and 0.511 m3 biogass/kg.VS.d ; compared with the biogas yield in anaerobic digestion system A (ADSA), the biogas yield in anaerobic digestion system B (ADSB) and anaerobic digestion system C (ADSC) had been increased by more than 20% respectively; the SRF of three digested sludge are(were) from 6.8×10^13, 1. 1×10^13 to 5.1×10^12 m/Kg, natural settling rates of 12 h are 26, 37 and 56% and that of 24 h are 32%, 45% and 59% respectively; the centrifugal dewatering rate of 3 min at speed of 1000 rpm were 16%, 31% and 51% respectively; the turbidity of centrifugal supernatant were 804, 754 and 678FTU simultaneously.展开更多
Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. T...Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.展开更多
Dried anaerobic granular sludge (DAGS) for removing phenol (organic) and lead (inorganic) pollutants from synthetic wastewater was examined in a fixed bed system. A general rate multi-component model has been bu...Dried anaerobic granular sludge (DAGS) for removing phenol (organic) and lead (inorganic) pollutants from synthetic wastewater was examined in a fixed bed system. A general rate multi-component model has been built to predict the fixed bed breakthrough curves for single and dual-component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm. The equilibrium isotherm model parameters such as isotherm model constants (qm and b), pore diffusion coefficients (Dp) were obtained from batch experiments, while the external mass transfer coefficients and axial dispersion (kf, Dz) were calculated from empirical correlations. The results show that the general rate multi-component model was found suitable for describing the biosorption process of the dynamic behavior of the DAGS adsorber column and that DAGS can be used efficiently to remove organic and inorganic pollutants.展开更多
Samples of thickened waste activated sludge (TWAS) at two different concentrations were exposed to microwave radiation. Some of the samples were not allowed to heat up, to study the athermal effect of microwaves. Th...Samples of thickened waste activated sludge (TWAS) at two different concentrations were exposed to microwave radiation. Some of the samples were not allowed to heat up, to study the athermal effect of microwaves. The samples exposed to microwaves where their temperature was allowed to increase showed a higher degree of chemical oxygen demand (COD), protein and carbohydrate solubilization compared to a control. The size distribution of particles was changed after exposure of TWAS to microwaves. These results were also observed in the samples exposed to microwaves but kept at a constant temperature, suggesting the occurrence of a microwave athermal effect. Thermally (samples experiencing a temperature increase) and athermally (samples that were maintained at ambient temperature) microwaved subsequent anaerobic biodegradation. samples produced more methane than the non-microwaved controls in展开更多
The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the fin...The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the final product and are discharged in the effluent. Therefore, the objective of this study was to assess the performance of Expanded Granular Sludge Bed (EGSB) reactor to treat synthetic textile wastewater. Several experiments using Direct Red 81 and volatile fatty acids as model substrates were conducted. The problems of decolorization was evaluated at a variety of relevant operational conditions, such as substrate concentration, organic and hydraulic loading rates. The results showed that retention time of EGSB equals 1.6 h and 80 mg/L at the hydraulic and dye concentration respectively, and that the color removal efficiency can reach 90%. Additionally, some chemical additions were proposed to improve the decolorization rate and increase the treatment efficiency of the system. For instance, sulfide was added at 200 mg/L in the influent, which can increase the dye removal efficiency to 95%.展开更多
文摘Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids (VFA) was proportional to the chemical oxygen demand (COD) loading rate.The yield of VFA was around 0.28 g VFA/g COD over the COD loading rate from 1.25 to 30 g COD·L -1 ·d -1 and the hydraulic retention time from 8.8 h to 24 h.Distribution of organic acids,the contents of propionic and butyric acids in the effluent in particular were also dependent on the COD loading rate.The thermophilic UASB reactor showed a stable performance on hydrolysis and acidogenesis of starch as well as suspended solid removal at short hydraulic retention times and high influent pH(10~11),during the operation of 110 d.
基金Project (No. 40272108) supported by the National Natural Science Foundation of China
文摘A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2006AA06Z332)the Scienceand Technology Foundation for Key Project of Zhejiang Province (No2003C13005), China
文摘The concept of anaerobic ammonium oxidation(ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile,the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite(CANON) have been developed,and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will ac-celerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process.
基金Acknowledgements The authors wish to thank the National Natural Science Foundation of China (51522811 and 51278479), and the NSFC-RGC fund (21261160489) for the support of this work.
文摘Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse, Over the past few years, some wastewater treatment plants have tried to revamp themselves as "resource factories," enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side- stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.
基金Supported by the National High Technology Research and Development Program of China(2008AA062401)the China-US International Cooperation Project(2011DFA90800)the Ministry of Science and Technology,China
文摘Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates(50, 65, and 80 g·L-1) to produce biogas. The results indicated that the wheat straw pretreated with 80% moisture content and 4% ammonia achieved the highest methane yield of 199.7 ml·g-1(based on per unit volatile solids loaded), with shorter digestion time(T80) of 25 days at the loading rate of 65 g·L-1compared to untreated one. The main chemical compositions of wheat straw were also analyzed. The cellulose and hemicellulose contents were decomposed by 2%-20% and 26%-42%, respectively,while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.
文摘A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50 % inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia mtrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d.
基金Project (20377013) supported by the National Natural Science Foundation of China project (020959) supported by Department of Science and Technology of Guangdong Province
文摘Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment. Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%, 74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. Thc,dcmand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the inftuent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.
文摘Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than 1 mg·L-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg· L-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus removal decreased with 8 days SRT. When the SRT was restored to 16 days, however, the efficiency of phosphorus removal was higher than 90%.
基金Sponsored by the National Hi-Tech Research and Development Program of China (Grant No.2003AA601090)Projects of Development Plan of the State Key Fundamental Research of China (Grant No.2004CB4185)
文摘The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.
基金Project(2006BAJ04A)suppprted by the National Sci-Tech Support Plan,China
文摘Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.
基金Project (No. 020099) supported by a Grant from EnvironmentalProtection Bureau of Guangdong Province, China
文摘A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentra- tions ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear supe- riority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microor- ganisms.
文摘[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement.
文摘This paper presents the results obtained for the effluent dewatering properties of anaerobic digestion of secondary sludge (SS) and anaerobic co-digestion of mixture of this sludge with the distillery wastewater (DW) under thermophilic (55±1 ℃), 5 L of working volume, three parallel lab-scale conditions. Its mixtures were prepared with a DW content of 25%and 50% and the C/N ratios of mixtures are 13.1 and 17.6, respectively. The effluent dewatering properties were evaluated under stable conditions which the biogas yield and the effluent pH were steady. The natural settleability, biogas yield, centrifugal dewatering, centrifugal supernatant turbidity and specific resistance filtration (SRF) were investigated. The results showed that the effluent dewatering properties of anaerobic co-digestion of mixtures between SS and DW were better than that of anaerobic digestion of SS alone. In the anaerobic digestion system with the feed were SS, mixture of SS and a DW content of 25%and 50% in order, the net biogas yield of secondary sludge in ADSA,ADSB and ADSC were 0.42 0.507 and 0.511 m3 biogass/kg.VS.d ; compared with the biogas yield in anaerobic digestion system A (ADSA), the biogas yield in anaerobic digestion system B (ADSB) and anaerobic digestion system C (ADSC) had been increased by more than 20% respectively; the SRF of three digested sludge are(were) from 6.8×10^13, 1. 1×10^13 to 5.1×10^12 m/Kg, natural settling rates of 12 h are 26, 37 and 56% and that of 24 h are 32%, 45% and 59% respectively; the centrifugal dewatering rate of 3 min at speed of 1000 rpm were 16%, 31% and 51% respectively; the turbidity of centrifugal supernatant were 804, 754 and 678FTU simultaneously.
基金Supported by the Key International Cooperation Project of NSFC, Key Project of NSFC (No. 50138010)863 Hi-Technology Research and Development Program of China (2003AA601010).
文摘Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.
文摘Dried anaerobic granular sludge (DAGS) for removing phenol (organic) and lead (inorganic) pollutants from synthetic wastewater was examined in a fixed bed system. A general rate multi-component model has been built to predict the fixed bed breakthrough curves for single and dual-component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm. The equilibrium isotherm model parameters such as isotherm model constants (qm and b), pore diffusion coefficients (Dp) were obtained from batch experiments, while the external mass transfer coefficients and axial dispersion (kf, Dz) were calculated from empirical correlations. The results show that the general rate multi-component model was found suitable for describing the biosorption process of the dynamic behavior of the DAGS adsorber column and that DAGS can be used efficiently to remove organic and inorganic pollutants.
文摘Samples of thickened waste activated sludge (TWAS) at two different concentrations were exposed to microwave radiation. Some of the samples were not allowed to heat up, to study the athermal effect of microwaves. The samples exposed to microwaves where their temperature was allowed to increase showed a higher degree of chemical oxygen demand (COD), protein and carbohydrate solubilization compared to a control. The size distribution of particles was changed after exposure of TWAS to microwaves. These results were also observed in the samples exposed to microwaves but kept at a constant temperature, suggesting the occurrence of a microwave athermal effect. Thermally (samples experiencing a temperature increase) and athermally (samples that were maintained at ambient temperature) microwaved subsequent anaerobic biodegradation. samples produced more methane than the non-microwaved controls in
文摘The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the final product and are discharged in the effluent. Therefore, the objective of this study was to assess the performance of Expanded Granular Sludge Bed (EGSB) reactor to treat synthetic textile wastewater. Several experiments using Direct Red 81 and volatile fatty acids as model substrates were conducted. The problems of decolorization was evaluated at a variety of relevant operational conditions, such as substrate concentration, organic and hydraulic loading rates. The results showed that retention time of EGSB equals 1.6 h and 80 mg/L at the hydraulic and dye concentration respectively, and that the color removal efficiency can reach 90%. Additionally, some chemical additions were proposed to improve the decolorization rate and increase the treatment efficiency of the system. For instance, sulfide was added at 200 mg/L in the influent, which can increase the dye removal efficiency to 95%.