The aim of the research was to obtain both an excellent effluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treat...The aim of the research was to obtain both an excellent effluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treating domestic wastewater. During the experimental period of three months, excellent removals for COD, NH3-H, TN were obtained, and mean removals were 91.87%, 96.13%, and 69. 23%, respectively. Whereas, at first 20 days, the removal for TP was only about 15.87%. In the following days, about 30% of raw water was introduced into the anaerobic reactor to supply organics for denitrificatien and release of polyphosphate, then a significant improvement for TP removal was observed, and mean removal of TP increased to 76.35%. During the operational period, it was investigated that the permeate could meet the requirements of several water criteria for reuse except free chlorine, and a mean excess sludge yield coefficient of 0.137 g MLSS/g COD was obtained. Therefore, the predicted goals of permeate for reuse and excess sludge reduction could be both achieved after dosing a certain quantity of disinfectant into the permeate.展开更多
Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bac- te...Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bac- terium TCSI from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS 1 and some thermophilic bac- terial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic path- ways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved inthe sediment under the microbial mat. Aerophobetes bac- terium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljung- dahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aero- phobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal trans- duction and cell motility. The metabolic activities of TCS 1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCSI might be a facultative bacterium in anaerobic saline sedi- ments near cold seeps.展开更多
文摘The aim of the research was to obtain both an excellent effluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treating domestic wastewater. During the experimental period of three months, excellent removals for COD, NH3-H, TN were obtained, and mean removals were 91.87%, 96.13%, and 69. 23%, respectively. Whereas, at first 20 days, the removal for TP was only about 15.87%. In the following days, about 30% of raw water was introduced into the anaerobic reactor to supply organics for denitrificatien and release of polyphosphate, then a significant improvement for TP removal was observed, and mean removal of TP increased to 76.35%. During the operational period, it was investigated that the permeate could meet the requirements of several water criteria for reuse except free chlorine, and a mean excess sludge yield coefficient of 0.137 g MLSS/g COD was obtained. Therefore, the predicted goals of permeate for reuse and excess sludge reduction could be both achieved after dosing a certain quantity of disinfectant into the permeate.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB06010201)the National Natural Science Foundation of China (41476104)+3 种基金supported by the Strategic Priority Research Program (XDB06010102)an award from the King Abdullah University of Science and Technology (SA-C0040/ UK-C0016) to P.Y. QianV.B. Bajic was supported by KAUST Base Research FundsS. Bougouffa was supported by a SABIC postdoctoral fellowship
文摘Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bac- terium TCSI from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS 1 and some thermophilic bac- terial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic path- ways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved inthe sediment under the microbial mat. Aerophobetes bac- terium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljung- dahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aero- phobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal trans- duction and cell motility. The metabolic activities of TCS 1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCSI might be a facultative bacterium in anaerobic saline sedi- ments near cold seeps.