为探测0.1~50MeV低能电子脉冲束流的位置分布,研制基于国产厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM)的二维位置探测器,位置分辨要求好于200gm,灵敏面积为50mm×50mm。THGEM的孔径为150gm、孔间距400p...为探测0.1~50MeV低能电子脉冲束流的位置分布,研制基于国产厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM)的二维位置探测器,位置分辨要求好于200gm,灵敏面积为50mm×50mm。THGEM的孔径为150gm、孔间距400pm、厚度100gm。用Geant4模拟了薄膜窗厚度、空气层厚度等对电子透过率和横向扩散的影响。根据模拟结果,优化了探测器的结构和设计。并用能量为5.9keV的X射线源55Fe测试不同工作气体的增益,单层最大增益好于1×10^4,双层最大增益好于6×10^4,能量分辨率好于23%。展开更多
厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM/TGEM)在高能物理实验中有广泛应用,如X射线、带电粒子及中子的探测和成像等领域。THGEM的制作通过印制电路的钻孔、蚀刻和外形等工艺来实现,并要求具有高耐压、强电...厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM/TGEM)在高能物理实验中有广泛应用,如X射线、带电粒子及中子的探测和成像等领域。THGEM的制作通过印制电路的钻孔、蚀刻和外形等工艺来实现,并要求具有高耐压、强电场、小孔间距和高孔位精度等特点。本文将根据THGEM的以上特点,分析其对PCB在材料选择、设计和工艺制程等方面的特殊要求,并通过对比各条件的产品性能数据给出应用于高性能THGEM制作的PCB解决方莱。展开更多
气体电子倍增器(GEM)以其独特的性能在辐射探测器领域得到了广泛的应用,对50μm厚聚酰亚胺(kapton)薄膜利用真空热蒸发和激光掩膜打孔法制作GEM膜,孔径100μm,孔距223μm,并封装流气式探测器,有效探测面积3mm×3mm。5.9keV55F e X...气体电子倍增器(GEM)以其独特的性能在辐射探测器领域得到了广泛的应用,对50μm厚聚酰亚胺(kapton)薄膜利用真空热蒸发和激光掩膜打孔法制作GEM膜,孔径100μm,孔距223μm,并封装流气式探测器,有效探测面积3mm×3mm。5.9keV55F e X射线测量了GEM在不同高压和混合气体比例时的脉冲幅度分布情况。讨论了高压和气体比例对探测器计数率和能量分辨率的影响。结果表明GEM具有较高的信噪比,能量分辨率可达18.2%。展开更多
介绍了一种气体倍增器(Gas Electron Multiplier,GEM)薄膜,研制了有效面积为10 cm×10 cm的单层GEM探测器原型机.利用55Fe的5.9 ke V的x射线源对单层GEM探测器的正比性,有效增益以及能量分辨率随漂移电场、GEM工作电压以及收集场的...介绍了一种气体倍增器(Gas Electron Multiplier,GEM)薄膜,研制了有效面积为10 cm×10 cm的单层GEM探测器原型机.利用55Fe的5.9 ke V的x射线源对单层GEM探测器的正比性,有效增益以及能量分辨率随漂移电场、GEM工作电压以及收集场的函数关系进行了测量,找到了探测器的最佳工作条件.实验结果表明,探测器的正比性良好,性能稳定.当GEM工作电压为451 V时,增益达到500,此时的能量分辨率为17.6%.展开更多
新型微结构气体探测器,如气体电子倍增器(gas electron multiplier,GEM)等,具有非常好的位置分辨率潜力(σ<100μm),但是需要匹配大规模高密度的读出电子学,给探测器的建设、造价、功耗、空间利用等带来极大压力.阻性阳极读出方法可...新型微结构气体探测器,如气体电子倍增器(gas electron multiplier,GEM)等,具有非常好的位置分辨率潜力(σ<100μm),但是需要匹配大规模高密度的读出电子学,给探测器的建设、造价、功耗、空间利用等带来极大压力.阻性阳极读出方法可以在保持较高位置分辨率的前提下,大幅节省电子学.基于厚膜电阻工艺,一种新的阻性单元阵列结构被成功开发和应用于三级级联GEM探测器的读出阳极.该阻性阳极包括6×6个6 mm×6 mm的基本阻性单元,仅需匹配49路读出电子学.^(55)Fe放射源(5.9 keV)和X光机(8 keV)实验的结果显示探测器的位置分辨率(σ)可好于80μm,位置非线性好于1.5%.同时,探测器还获得了很好的实物成像效果.探测器的优良性能表明这种阻性阳极读出方法适用于大面积二维成像气体探测器的读出,并可用于其他探测器的读出.展开更多
文摘为探测0.1~50MeV低能电子脉冲束流的位置分布,研制基于国产厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM)的二维位置探测器,位置分辨要求好于200gm,灵敏面积为50mm×50mm。THGEM的孔径为150gm、孔间距400pm、厚度100gm。用Geant4模拟了薄膜窗厚度、空气层厚度等对电子透过率和横向扩散的影响。根据模拟结果,优化了探测器的结构和设计。并用能量为5.9keV的X射线源55Fe测试不同工作气体的增益,单层最大增益好于1×10^4,双层最大增益好于6×10^4,能量分辨率好于23%。
文摘厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM/TGEM)在高能物理实验中有广泛应用,如X射线、带电粒子及中子的探测和成像等领域。THGEM的制作通过印制电路的钻孔、蚀刻和外形等工艺来实现,并要求具有高耐压、强电场、小孔间距和高孔位精度等特点。本文将根据THGEM的以上特点,分析其对PCB在材料选择、设计和工艺制程等方面的特殊要求,并通过对比各条件的产品性能数据给出应用于高性能THGEM制作的PCB解决方莱。
文摘气体电子倍增器(GEM)以其独特的性能在辐射探测器领域得到了广泛的应用,对50μm厚聚酰亚胺(kapton)薄膜利用真空热蒸发和激光掩膜打孔法制作GEM膜,孔径100μm,孔距223μm,并封装流气式探测器,有效探测面积3mm×3mm。5.9keV55F e X射线测量了GEM在不同高压和混合气体比例时的脉冲幅度分布情况。讨论了高压和气体比例对探测器计数率和能量分辨率的影响。结果表明GEM具有较高的信噪比,能量分辨率可达18.2%。
文摘介绍了一种气体倍增器(Gas Electron Multiplier,GEM)薄膜,研制了有效面积为10 cm×10 cm的单层GEM探测器原型机.利用55Fe的5.9 ke V的x射线源对单层GEM探测器的正比性,有效增益以及能量分辨率随漂移电场、GEM工作电压以及收集场的函数关系进行了测量,找到了探测器的最佳工作条件.实验结果表明,探测器的正比性良好,性能稳定.当GEM工作电压为451 V时,增益达到500,此时的能量分辨率为17.6%.