Neutron tube is a kind of accelerator neutron source, which has been applied extensively. It is mainly composed of an ion source system, an accelerator system, and a target system. The target system is one of the most...Neutron tube is a kind of accelerator neutron source, which has been applied extensively. It is mainly composed of an ion source system, an accelerator system, and a target system. The target system is one of the most important parameters of the neutron tube and it impacts directly the yield, the lifetime, and the stability. By far the relation between the property of neutron tube and target thickness has not been studied drastically in the Institute of Radiation Technology of Northeast Normal University. High-quality titanium target should be produced in order to manufacture the neutron tube with intense yield, long lifetime and high stability. In our experiment, the pure titanium film was evaporated on the ceramic target by using the evaporation technique. The impact of the thickness of the titanium film on the yield of the neutron tube was studied, and the yield of the neutron tube was on optimistic state if the thickness of titanium film was 2.2 μm. The properties of training and stability of neutron tubes with different thick titanium film target were also present in this paper.展开更多
文摘Neutron tube is a kind of accelerator neutron source, which has been applied extensively. It is mainly composed of an ion source system, an accelerator system, and a target system. The target system is one of the most important parameters of the neutron tube and it impacts directly the yield, the lifetime, and the stability. By far the relation between the property of neutron tube and target thickness has not been studied drastically in the Institute of Radiation Technology of Northeast Normal University. High-quality titanium target should be produced in order to manufacture the neutron tube with intense yield, long lifetime and high stability. In our experiment, the pure titanium film was evaporated on the ceramic target by using the evaporation technique. The impact of the thickness of the titanium film on the yield of the neutron tube was studied, and the yield of the neutron tube was on optimistic state if the thickness of titanium film was 2.2 μm. The properties of training and stability of neutron tubes with different thick titanium film target were also present in this paper.