期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
复合材料厚层合板力学性能等效方法研究
1
作者 江彬彬 王志瑾 《机械制造与自动化》 2018年第4期63-66,共4页
基于复合材料三维等效弹性常数理论,分别建立了厚复合材料悬臂梁和三点弯曲厚复合材料层合板的等效模型进行数值分析,并和逐层细分模型结果对比,研究了子层对等效模型位移计算误差的影响,分析了等效模型层间应力的计算精度。研究表明,... 基于复合材料三维等效弹性常数理论,分别建立了厚复合材料悬臂梁和三点弯曲厚复合材料层合板的等效模型进行数值分析,并和逐层细分模型结果对比,研究了子层对等效模型位移计算误差的影响,分析了等效模型层间应力的计算精度。研究表明,对于子层厚度比<0.2的厚复合材料层合板,采用等效模型进行数值分析,可以得到较高精度的位移-应力分析结果。以等效模型得到的层间应力作为设计约束时,厚复合材料层合板的设计是偏安全的。 展开更多
关键词 复合材料 厚层合板 三维弹性常数 力学性能 等效模型 间应力
下载PDF
Microstructure and impact mechanical properties of multi-layer and multi-pass TIG welded joints of Al-Zn-Mg alloy plates 被引量:7
2
作者 Qing-wei GAO Feng-yuan SHU +1 位作者 Peng HE Wen-bo DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2496-2505,共10页
The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch... The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture. 展开更多
关键词 Al-Zn-Mg alloy thick plates multi-layer TIG welding MICROSTRUCTURE impact mechanical property
下载PDF
Micro porosity and its effect on fatigue performance of 7050 aluminum thick plates
3
作者 XIAO Xiang ZHANG Qi +2 位作者 JIANG Hui-xue LIU Cheng CAO Ling-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期912-923,共12页
Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental p... Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests. 展开更多
关键词 micro porosity fatigue life X-ray computed tomography 7050 aluminum alloys thick plate
下载PDF
Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates 被引量:3
4
作者 FANG Fei ZHAO ChangPeng YANG Wei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第4期581-585,共5页
Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling differ... Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law. 展开更多
关键词 magnetoelectric behavior layered composite PZT Metgals multiferroic materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部