The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch...The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.展开更多
Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental p...Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests.展开更多
Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling differ...Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.展开更多
基金Project(ZR2016EEQ03) supported by the Shandong Province Natural Science Foundation,ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.
基金Project(2019KJ2X08-4) supported by Chinalco Technology Development Project Fund,China。
文摘Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests.
基金supports by the Key Research Program of National Natural Science Foundation of China(Grant No. 10832009)
文摘Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.