针对变矩器常用的基于等倾角射影定理的叶片厚度设计方法(简称为等倾角射影法)带来的叶片三维形态连续性差,以及变矩器效率和能容低下问题,提出符合美国国家航空咨询委员会(National Advisory Committee for Aeronautics,NACA)翼型特征...针对变矩器常用的基于等倾角射影定理的叶片厚度设计方法(简称为等倾角射影法)带来的叶片三维形态连续性差,以及变矩器效率和能容低下问题,提出符合美国国家航空咨询委员会(National Advisory Committee for Aeronautics,NACA)翼型特征的液力变矩器叶片厚度设计方法。通过定义NACA翼型函数的分段约束,使其符合液力变矩器的流固耦合要求,实现变矩器翼型函数系数的确定。根据翼型函数及直纹曲面规则分别得出叶片厚度值与法向加厚方向,从而得出液力变矩器叶片厚度矢量,实现叶片厚度的设计(简称法向加厚法)。以某型号双涡轮液力变矩器为参照对象,分别利用本方法与等倾角射影法建立模型,对比CFD仿真结果与台架试验结果可知,利用该方法有效地减少了叶片设计参数,设计出的水滴状叶片能够提高变矩器的效率,实现叶片的自动化设计。展开更多
文摘针对变矩器常用的基于等倾角射影定理的叶片厚度设计方法(简称为等倾角射影法)带来的叶片三维形态连续性差,以及变矩器效率和能容低下问题,提出符合美国国家航空咨询委员会(National Advisory Committee for Aeronautics,NACA)翼型特征的液力变矩器叶片厚度设计方法。通过定义NACA翼型函数的分段约束,使其符合液力变矩器的流固耦合要求,实现变矩器翼型函数系数的确定。根据翼型函数及直纹曲面规则分别得出叶片厚度值与法向加厚方向,从而得出液力变矩器叶片厚度矢量,实现叶片厚度的设计(简称法向加厚法)。以某型号双涡轮液力变矩器为参照对象,分别利用本方法与等倾角射影法建立模型,对比CFD仿真结果与台架试验结果可知,利用该方法有效地减少了叶片设计参数,设计出的水滴状叶片能够提高变矩器的效率,实现叶片的自动化设计。