As one of the advanced and efficient means of joining,the clinching process is capable of joining sheets with different materials or different sheet thicknesses.In this article,a novel modified clinching process,i.e.,...As one of the advanced and efficient means of joining,the clinching process is capable of joining sheets with different materials or different sheet thicknesses.In this article,a novel modified clinching process,i.e.,the dieless clinching process,was executed to join AA6061 aluminum alloy with sheet thicknesses of 1.5,2.0,2.5 and 3.0 mm according to different sheet stack-ups.The geometrical characteristics,microhardness distribution,failure behavior,static strength,absorbed energy and instantaneous stiffness of the novel dieless joint were gotten and investigated.The results indicated that the sheet thickness ratio has a notable effect on the failure behavior and mechanical properties of the novel dieless clinched joint,and a relatively large sheet thickness ratio can improve the joint performance when joining sheets with different sheet thicknesses.展开更多
基金Project(51805416) supported by the National Natural Science Foundation of ChinaProject(2019QNRC001) supported by the Young Elite Scientists Sponsorship Program by CAST,China+1 种基金Project(2021JJ20059) supported by the Hunan Provincial Natural Science Foundation for Excellent Young Scholars,ChinaProject(2019RS1002) supported by the Huxiang High-Level Talent Gathering Project of Hunan Province,China。
文摘As one of the advanced and efficient means of joining,the clinching process is capable of joining sheets with different materials or different sheet thicknesses.In this article,a novel modified clinching process,i.e.,the dieless clinching process,was executed to join AA6061 aluminum alloy with sheet thicknesses of 1.5,2.0,2.5 and 3.0 mm according to different sheet stack-ups.The geometrical characteristics,microhardness distribution,failure behavior,static strength,absorbed energy and instantaneous stiffness of the novel dieless joint were gotten and investigated.The results indicated that the sheet thickness ratio has a notable effect on the failure behavior and mechanical properties of the novel dieless clinched joint,and a relatively large sheet thickness ratio can improve the joint performance when joining sheets with different sheet thicknesses.