The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surfa...The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surface of AZ91D magnesium alloy. The microstructure of the layer was characterized by scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy(EDS).The phase constituent of these alloys was identified by X-ray diffractometry(XRD).The analysis results reveal that a zinc-based alloy layer with a thickness of 700μm can form on the surface of AZ91 alloy matrix.The layer is composed of Mg7Zn3,MgZn and a small amount of α-Mg solid solution.The results indicate that the corrosion-resistance of the specimen with a zinc-based alloy layer is much better than that of the specimen without the layer after being immersed in 5%NaCl solution for 240 h, and the layer is more protective for the AZ91 alloy.展开更多
The "solidified liquid layer" model has been examined using a quartz crystal microbalance(QCM) with a polymeric matrix.The model is shown to give a reasonable explanation for the following experimental obser...The "solidified liquid layer" model has been examined using a quartz crystal microbalance(QCM) with a polymeric matrix.The model is shown to give a reasonable explanation for the following experimental observations:(i) The opposite response of the QCM and surface plasmon resonance(SPR) for the activation process;(ii) the marked difference in the responses for IgG/anti-IgG interaction between QCM and SPR.Theoretical analysis and experimental results indicated that QCM is sensitive to the thickness change of the "solidified liquid layer" but not the mass of captured biomolecules(i.e.,the immobilized mass),implying caution must be taken in interpreting QCM results.展开更多
文摘The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surface of AZ91D magnesium alloy. The microstructure of the layer was characterized by scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy(EDS).The phase constituent of these alloys was identified by X-ray diffractometry(XRD).The analysis results reveal that a zinc-based alloy layer with a thickness of 700μm can form on the surface of AZ91 alloy matrix.The layer is composed of Mg7Zn3,MgZn and a small amount of α-Mg solid solution.The results indicate that the corrosion-resistance of the specimen with a zinc-based alloy layer is much better than that of the specimen without the layer after being immersed in 5%NaCl solution for 240 h, and the layer is more protective for the AZ91 alloy.
基金supported by the 100 Talents Programme of Chinese Academy of Sciences(08BM031001)the Fok Ying Tung Education Foundation (114013) to H.M.the National Basic Research Program of China (2009CB320300)
文摘The "solidified liquid layer" model has been examined using a quartz crystal microbalance(QCM) with a polymeric matrix.The model is shown to give a reasonable explanation for the following experimental observations:(i) The opposite response of the QCM and surface plasmon resonance(SPR) for the activation process;(ii) the marked difference in the responses for IgG/anti-IgG interaction between QCM and SPR.Theoretical analysis and experimental results indicated that QCM is sensitive to the thickness change of the "solidified liquid layer" but not the mass of captured biomolecules(i.e.,the immobilized mass),implying caution must be taken in interpreting QCM results.