A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in...A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in this paper. Indirect evaporative cooler is used for sensible cooling of air which then is used for air conditioning purposes. Mathematical model was developed allowing determining heat transfer surface, outlet air temperature and specific humidity of the air being cooled. To make the model simpler some simplifications have been incorporated. The model has high level of correctness and can be used to calculate and design different types of evaporative heat exchangers. Analysis of results of calculations by the help of the developed model prove that the surface of heat exchanger depends on the thickness of water film layer by the regularity of direct proportionality. Moreover, increasing of the water film thickness brings to the decreasing of the efficiency of evaporative type heat exchanger. The model can be used for correct calculation and design of an evaporative cooling air conditioning systems.展开更多
The influence of p-type Ga N(p Ga N) thickness on the light output power(LOP) and internal quantum efficiency(IQE) of light emitting diode(LED) was studied by experiments and simulations. The LOP of Ga N-based LED inc...The influence of p-type Ga N(p Ga N) thickness on the light output power(LOP) and internal quantum efficiency(IQE) of light emitting diode(LED) was studied by experiments and simulations. The LOP of Ga N-based LED increases as the thickness of p Ga N layer decreases from 300 nm to 100 nm, and then decreases as the thickness decreases to 50 nm. The LOP of LED with 100-nm-thick pG a N increases by 30.9% compared with that of the conventional LED with 300-nm-thick p Ga N. The variation trend of IQE is similar to that of LOP as the decrease of Ga N thickness. The simulation results demonstrate that the higher light efficiency of LED with 100-nm-thick p Ga N is ascribed to the improvements of the carrier concentrations and recombination rates.展开更多
Two-dimensional(2 D) transition metal dichalcogenides(TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and ...Two-dimensional(2 D) transition metal dichalcogenides(TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and optical properties. Controlling the thickness and doping of 2 D TMDCs are crucial toward their future applications. Here, we report an effective HAu Cl4 treatment method and achieve simultaneous thinning and doping of various TMDCs in one step. We find that the HAu Cl4 treatment not only thins thick Mo S2 flakes into few layers or even monolayers, but also simultaneously tunes Mo S2 into p-type. The effects of various parameters in the process have been studied systematically,and an Au intercalation assisted thinning and doping mechanism is proposed. Importantly, this method also works for other typical TMDCs, including WS2, Mo Se2 and WSe2,showing good universality. Electrical transport measurements of field-effect transistors(FETs) based on Mo S2 flakes show a big increase of On/Off current ratios(from 102 to 107) after the HAu Cl4 treatment. Meanwhile, the subthreshold voltages of the Mo S2 FETs shift from-60 to +27 V after the HAu Cl4 treatment, with a p-type doping behavior. This study provides an effective and simple method to control the thickness and doping properties of 2 D TMDCs, paving a way for their applications in high performance electronics and optoelectronics.展开更多
文摘A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in this paper. Indirect evaporative cooler is used for sensible cooling of air which then is used for air conditioning purposes. Mathematical model was developed allowing determining heat transfer surface, outlet air temperature and specific humidity of the air being cooled. To make the model simpler some simplifications have been incorporated. The model has high level of correctness and can be used to calculate and design different types of evaporative heat exchangers. Analysis of results of calculations by the help of the developed model prove that the surface of heat exchanger depends on the thickness of water film layer by the regularity of direct proportionality. Moreover, increasing of the water film thickness brings to the decreasing of the efficiency of evaporative type heat exchanger. The model can be used for correct calculation and design of an evaporative cooling air conditioning systems.
基金supported by the National High Technology Research and Development Program of China(No.2014AA032609)the National Natural Science Foundation of China(Nos.61504044,61404050 and 51502156)+3 种基金the China Postdoctoral Science Foundation(Nos.2015M582384 and 2016T90782)the Major Scientific and Technological Special Project of Guangdong Province(No.2014B010119002)the Fundamental Research Funds for the Central Universities(No.2015ZM074)the Union Funds of Guizhou Science and Technology Department and Guizhou Minzu University(No.LH20157221)
文摘The influence of p-type Ga N(p Ga N) thickness on the light output power(LOP) and internal quantum efficiency(IQE) of light emitting diode(LED) was studied by experiments and simulations. The LOP of Ga N-based LED increases as the thickness of p Ga N layer decreases from 300 nm to 100 nm, and then decreases as the thickness decreases to 50 nm. The LOP of LED with 100-nm-thick pG a N increases by 30.9% compared with that of the conventional LED with 300-nm-thick p Ga N. The variation trend of IQE is similar to that of LOP as the decrease of Ga N thickness. The simulation results demonstrate that the higher light efficiency of LED with 100-nm-thick p Ga N is ascribed to the improvements of the carrier concentrations and recombination rates.
基金support from the National Natural Science Foundation of China (51722206 and 11674150)the Youth 1000-Talent Program of China+3 种基金the Economic, Trade and Information Commission of Shenzhen Municipality for the “2017 Graphene Manufacturing Innovation Center Project” (201901171523)Shenzhen Basic Research Project (JCYJ20170307140956657 and JCYJ20160613160524999)Guangdong Innovative and Entrepreneurial Research Team Program (2017ZT07C341 and 2016ZT06D348)the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline
文摘Two-dimensional(2 D) transition metal dichalcogenides(TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and optical properties. Controlling the thickness and doping of 2 D TMDCs are crucial toward their future applications. Here, we report an effective HAu Cl4 treatment method and achieve simultaneous thinning and doping of various TMDCs in one step. We find that the HAu Cl4 treatment not only thins thick Mo S2 flakes into few layers or even monolayers, but also simultaneously tunes Mo S2 into p-type. The effects of various parameters in the process have been studied systematically,and an Au intercalation assisted thinning and doping mechanism is proposed. Importantly, this method also works for other typical TMDCs, including WS2, Mo Se2 and WSe2,showing good universality. Electrical transport measurements of field-effect transistors(FETs) based on Mo S2 flakes show a big increase of On/Off current ratios(from 102 to 107) after the HAu Cl4 treatment. Meanwhile, the subthreshold voltages of the Mo S2 FETs shift from-60 to +27 V after the HAu Cl4 treatment, with a p-type doping behavior. This study provides an effective and simple method to control the thickness and doping properties of 2 D TMDCs, paving a way for their applications in high performance electronics and optoelectronics.