A novel composite charged mosaic membrane(CCMM) was prepared via interfacial polymerization(IP) of polyamine[poly(epichlorohydrin amine) ]and trimesoyl chloride(TMC) on the polyethersulfone(PES) support. Fourier trans...A novel composite charged mosaic membrane(CCMM) was prepared via interfacial polymerization(IP) of polyamine[poly(epichlorohydrin amine) ]and trimesoyl chloride(TMC) on the polyethersulfone(PES) support. Fourier transform infrared spectroscopy(FT-IR) ,environmental scanning electron microscopy(ESEM) ,atomic force microscopy(AFM) and water contact angle analysis were applied to characterize the resulted CCMM.The FT-IR spectrum indicates that TMC reacts sufficiently with polyamine.ESEM and AFM pictures show that the IP process produces a dense selective layer on the support membrane.The water contact angle of the CCMM is smaller than that of the substrate membrane because of the cross-linked hydrophilic polyamine network.Several factors affecting the IP reaction and the performance of the CCMM,such as monomer concentration,reaction time,pH value of aqueous phase solution and post-treatment,were studied.The pure water flux of the optimized CCMM is 14.73 L·m -2 ·h -1 ·MPa -1 at the operating pressure of 0.4 MPa.The values of separation factorαfor NaCl/PEG1000/water and MgCl2/PEG1000/water are 11.89 and 9.96,respectively.These results demonstrate that CCMM is promising for the separation of low-molecular-weight organics from their salt aqueous solutions.展开更多
The aim of the study was to find the interrelations between the activity of intracellular dehydrogenases, abundance of microorganisms, and the level of soil DNA in the Mollic Gleysol profile, with notification on the ...The aim of the study was to find the interrelations between the activity of intracellular dehydrogenases, abundance of microorganisms, and the level of soil DNA in the Mollic Gleysol profile, with notification on the dominant DNA form (extra-or intra-cellular), depending on the type of land use. Two neighbouring meadows were selected for investigations: one systematically cultivated and fertilized and the other deprived of any effect of anthropogenic activity, used as a control. We have demonstrated that dehydrogenase activity (DHA), the DNA content and microbial abundance strongly depended on the type of land use. DHA exhibited a significant correlation with the DNA content (r = 0.99^*** and r = 0.74^*, for cultivated and control sites, respectively). This relationship with such a high r value might suggest domination of the intracellular form of DNA in the cultivated meadow, which is also confirmed by the c.a. 13% increase in microorganism abundance in the cultivated soil. The optimal conditions for microbial activities were defined by the significant positive interrelationships between microbial abundance and the total organic carbon content, and a negative correlation with pH, redox potential and soil bulk density.展开更多
Relativistic mean-field theory and phase-shift analysis are combined together to investigate the elasticCoulomb scattering between electrons and unstable nuclei.Electron scattering at several different energies is stu...Relativistic mean-field theory and phase-shift analysis are combined together to investigate the elasticCoulomb scattering between electrons and unstable nuclei.Electron scattering at several different energies is studiedand compared,in order to see the energy dependence of electron-nucleus scattering.It is shown that electron scattering at200 MeV or 300 MeV can be used to reveal electron-nucleus scattering information around the first diffraction minimum-Shiftsin opposite directions are obtained for the first diffraction minima of the electron scattering off the ground andfirst excited states of ^(17)F with ^(16)O as reference,and similar effects are obtained for ^(18)Ne.Besides,some neutron-richN = 8 isotones are also studied.Results show that electron scattering will be very useful and important in studyingboth proton- and neutron-rich nuclei in the future.展开更多
The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for differ...The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for different alpine grassland types on the Tibetan Plateau, China. We explored whether the plant composition of different functional groups affects the manner in which species richness inereases with increasing area at scales ≤ 1.0 m^2. We also compared species richness (S) within and across forbs, legumes, sedges and grasses, with sampling subplot area (A) increasing from 0.0625 m^2 to 1.0 m^2 between alpine meadow and steppe communities. We applied a logarithmic function (S = b0 + b1 ln A) to determine the slope and intercept of SAR curves within and across functional groups. The results showed that the logarithmic relationship holds true between species richness and sampling area at these small scales. Both the intercept and slope of the logarithmic forbs-area curves are significantly higher than those for the three other functional groups (P 〈 0.05). Forb accounts for about 91.9 % of the variation in the intercept and 75.0% of the variation in the slope of the SAR curve when all functional groups' data were pooled together. Our results indicated that the different SAR patterns should be linked with species dispersal capabilities, environmental filtering, and life form composition within alpine grassland communities. Further studies on the relationship between species diversity and ecosystem functions should specify the differential responses of different functional groups to variations in climate and anthropogenic disturbances.展开更多
Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hier...Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hierarchical modelling framework based on generalized additive models was adopted.The two sub-alpine grasslands differed in aspect,altitude and soil parent material(volcanic origin,mostly trachyte,and andesite(TA) for Jenna and metamorphic rocks,mostly gneiss(G) for Belles).12 fenced squared plots,16 m2 each,were used per grassland,where soil properties,herbage production,species presence and cover of grasses,legumes and forbs were estimated.Mean herbage production was significantly affected by slope and altitude,soil K content and floristic composition as expressed by an ordination axis.Soil p H,floristic composition and average herbage production were significant predictors of forbs and total species richness.For the former,soil N content and for the latter the occurrence of Agrostis capillaris,were also included as significant terms in the predictive model.Thepredictors for grasses species richness were N content,having a positive effect,and average herbage production.In all cases higher species richness was predicted for intermediate values of average herbage production.Differential responses were found between forbs and grasses.The predictors of their species richness were different while for the case of the common predictor(N) the responses of the two groups were also different(grasses species numbers increase and forbs species numbers decreased with increasing N).Maximum species richness of grasses was observed at relatively low production levels while forbs species richness maximized at relatively high production levels.展开更多
Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability,especially wh...Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability,especially when wetlands are confronted with anthropogenic perturbations. Based on three-year record of wetland plant species abundance in Napahai plateau wetland, Shangri-la under the influence of varying anthropogenic perturbation types, our study tests the impact of such perturbations on plant richness and the relationship between ecosystem temporal stability and plant richness, and further assesses the effectiveness of using plant diversity indicator to probe ecosystem temporal stability of Napahai plateau wetland and the potential mechanisms. The results showed that anthropogenic perturbations could have contributed significantly to realistic variation in plant diversity, and further demonstrated that ecosystem temporal stability was positively related to realistic variation in plant diversity. In particular, communities with high levels of diversity might have better capacity to dampen perturbation impacts than communities with low levels of diversity, and statistical averaging could have played an important role in causing greater stability in more diverse communities. Also, asynchrony might have a stabilizing effect on community stability, and diversity could have stabilized communities through both species asynchrony and population stability propagation. Therefore, our results suggest that plant diversity could be used as a useful indicator of the stability conditions of plateau wetland ecosystems confronted with anthropogenic perturbations, and the preservation of plant communities at sufficient abundance and diversity is necessary for maintaining healthy plateau wetlands and for sustaining their essential ecosystem functions and services.展开更多
基金Supported by the National High Technology Research and Development Program of China(2008AA06Z330) the National Natural Science Foundation of China(20676125) the Technician Service Enterprise Action Program(2009GJD00048)
文摘A novel composite charged mosaic membrane(CCMM) was prepared via interfacial polymerization(IP) of polyamine[poly(epichlorohydrin amine) ]and trimesoyl chloride(TMC) on the polyethersulfone(PES) support. Fourier transform infrared spectroscopy(FT-IR) ,environmental scanning electron microscopy(ESEM) ,atomic force microscopy(AFM) and water contact angle analysis were applied to characterize the resulted CCMM.The FT-IR spectrum indicates that TMC reacts sufficiently with polyamine.ESEM and AFM pictures show that the IP process produces a dense selective layer on the support membrane.The water contact angle of the CCMM is smaller than that of the substrate membrane because of the cross-linked hydrophilic polyamine network.Several factors affecting the IP reaction and the performance of the CCMM,such as monomer concentration,reaction time,pH value of aqueous phase solution and post-treatment,were studied.The pure water flux of the optimized CCMM is 14.73 L·m -2 ·h -1 ·MPa -1 at the operating pressure of 0.4 MPa.The values of separation factorαfor NaCl/PEG1000/water and MgCl2/PEG1000/water are 11.89 and 9.96,respectively.These results demonstrate that CCMM is promising for the separation of low-molecular-weight organics from their salt aqueous solutions.
文摘The aim of the study was to find the interrelations between the activity of intracellular dehydrogenases, abundance of microorganisms, and the level of soil DNA in the Mollic Gleysol profile, with notification on the dominant DNA form (extra-or intra-cellular), depending on the type of land use. Two neighbouring meadows were selected for investigations: one systematically cultivated and fertilized and the other deprived of any effect of anthropogenic activity, used as a control. We have demonstrated that dehydrogenase activity (DHA), the DNA content and microbial abundance strongly depended on the type of land use. DHA exhibited a significant correlation with the DNA content (r = 0.99^*** and r = 0.74^*, for cultivated and control sites, respectively). This relationship with such a high r value might suggest domination of the intracellular form of DNA in the cultivated meadow, which is also confirmed by the c.a. 13% increase in microorganism abundance in the cultivated soil. The optimal conditions for microbial activities were defined by the significant positive interrelationships between microbial abundance and the total organic carbon content, and a negative correlation with pH, redox potential and soil bulk density.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10535010,10675090,10775068,and 10975072the 973 National Major State Basic Research and Development of China under Grant No.2007CB815004+1 种基金CAS Knowledge Innovation Project KJCX2-SW-N02the Research Fund of Doctoral Point (RFDP) under Grant No.20070284016
文摘Relativistic mean-field theory and phase-shift analysis are combined together to investigate the elasticCoulomb scattering between electrons and unstable nuclei.Electron scattering at several different energies is studiedand compared,in order to see the energy dependence of electron-nucleus scattering.It is shown that electron scattering at200 MeV or 300 MeV can be used to reveal electron-nucleus scattering information around the first diffraction minimum-Shiftsin opposite directions are obtained for the first diffraction minima of the electron scattering off the ground andfirst excited states of ^(17)F with ^(16)O as reference,and similar effects are obtained for ^(18)Ne.Besides,some neutron-richN = 8 isotones are also studied.Results show that electron scattering will be very useful and important in studyingboth proton- and neutron-rich nuclei in the future.
基金supported by the Chinese Academy of Sciences (Grant Nos.XDB03030401,KZCXZ-XB3-08)the State Scholarship Fund of the China Scholarship Council (Grant No.201400260118)the International Postdoctoral Exchange Fellowship Program 2014 by the Office of China Postdoctoral Council (Grant No.20140041)
文摘The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for different alpine grassland types on the Tibetan Plateau, China. We explored whether the plant composition of different functional groups affects the manner in which species richness inereases with increasing area at scales ≤ 1.0 m^2. We also compared species richness (S) within and across forbs, legumes, sedges and grasses, with sampling subplot area (A) increasing from 0.0625 m^2 to 1.0 m^2 between alpine meadow and steppe communities. We applied a logarithmic function (S = b0 + b1 ln A) to determine the slope and intercept of SAR curves within and across functional groups. The results showed that the logarithmic relationship holds true between species richness and sampling area at these small scales. Both the intercept and slope of the logarithmic forbs-area curves are significantly higher than those for the three other functional groups (P 〈 0.05). Forb accounts for about 91.9 % of the variation in the intercept and 75.0% of the variation in the slope of the SAR curve when all functional groups' data were pooled together. Our results indicated that the different SAR patterns should be linked with species dispersal capabilities, environmental filtering, and life form composition within alpine grassland communities. Further studies on the relationship between species diversity and ecosystem functions should specify the differential responses of different functional groups to variations in climate and anthropogenic disturbances.
基金The Greek Ministry of Agriculture is gratefully acknowledged for their support
文摘Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hierarchical modelling framework based on generalized additive models was adopted.The two sub-alpine grasslands differed in aspect,altitude and soil parent material(volcanic origin,mostly trachyte,and andesite(TA) for Jenna and metamorphic rocks,mostly gneiss(G) for Belles).12 fenced squared plots,16 m2 each,were used per grassland,where soil properties,herbage production,species presence and cover of grasses,legumes and forbs were estimated.Mean herbage production was significantly affected by slope and altitude,soil K content and floristic composition as expressed by an ordination axis.Soil p H,floristic composition and average herbage production were significant predictors of forbs and total species richness.For the former,soil N content and for the latter the occurrence of Agrostis capillaris,were also included as significant terms in the predictive model.Thepredictors for grasses species richness were N content,having a positive effect,and average herbage production.In all cases higher species richness was predicted for intermediate values of average herbage production.Differential responses were found between forbs and grasses.The predictors of their species richness were different while for the case of the common predictor(N) the responses of the two groups were also different(grasses species numbers increase and forbs species numbers decreased with increasing N).Maximum species richness of grasses was observed at relatively low production levels while forbs species richness maximized at relatively high production levels.
基金supported by National Natural Science Foundation of China and Yunnan province (Grant No.U0933601)Natural Science Foundation of Yunnan (Grant No.2009CC024)+1 种基金National Basic Research Program of China/973 Program (Grant No.2010CB434807)he Middle Aged Academic and Technical Leader Project of Yunnan Province (Grant No.2010CI016)
文摘Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability,especially when wetlands are confronted with anthropogenic perturbations. Based on three-year record of wetland plant species abundance in Napahai plateau wetland, Shangri-la under the influence of varying anthropogenic perturbation types, our study tests the impact of such perturbations on plant richness and the relationship between ecosystem temporal stability and plant richness, and further assesses the effectiveness of using plant diversity indicator to probe ecosystem temporal stability of Napahai plateau wetland and the potential mechanisms. The results showed that anthropogenic perturbations could have contributed significantly to realistic variation in plant diversity, and further demonstrated that ecosystem temporal stability was positively related to realistic variation in plant diversity. In particular, communities with high levels of diversity might have better capacity to dampen perturbation impacts than communities with low levels of diversity, and statistical averaging could have played an important role in causing greater stability in more diverse communities. Also, asynchrony might have a stabilizing effect on community stability, and diversity could have stabilized communities through both species asynchrony and population stability propagation. Therefore, our results suggest that plant diversity could be used as a useful indicator of the stability conditions of plateau wetland ecosystems confronted with anthropogenic perturbations, and the preservation of plant communities at sufficient abundance and diversity is necessary for maintaining healthy plateau wetlands and for sustaining their essential ecosystem functions and services.