Biocompatible carbon-spheres-based nanocomposites exhibit great potential in biomedical and clinical applications. In this contribution we report the first green photochemical synthesis of carbon spheres through in-si...Biocompatible carbon-spheres-based nanocomposites exhibit great potential in biomedical and clinical applications. In this contribution we report the first green photochemical synthesis of carbon spheres through in-situ enwrapping around silver nanoparticles(CS–Ag NPs). Since mesoporous carbon spheres can provide the location for combining Ag NPs and other agents, one-step synthesis of glutathione-stabilized CS–Ag NPs could be readily realized by photoreduction. TEM characterization of CS–Ag NPs nanocomposites illustrates that Ag NPs were superbly wrapped inside the carbon spheres and also adhered to the surfaces of the carbon spheres. These porous CS–Ag NPs show excellent fluorescence and effective antibacterial efficiency, exhibiting ideal lengthened activities against Escherichia coli and Staphylococcus aureus compared with bare Ag NPs. The relevant rationale behind it could be attributed to the fact that CS–Ag NPs nanocomposites can provide some excellent niches for the durable and slow release of silver ions. This raises the possibility of promising applications of CS–Ag NPs nanocomposites as excellent antibacterial agents for the efficient monitoring of some disease-related bacteria.展开更多
基金supported by the National Basic Research Program of China(2010CB732404)the National Natural Science Foundation of China(81325011,21327902,21175020)+1 种基金the National High Technology Research and Development Program of China(2012AA022703)the Suzhou Science&Technology Major Project(ZXY2012028)
文摘Biocompatible carbon-spheres-based nanocomposites exhibit great potential in biomedical and clinical applications. In this contribution we report the first green photochemical synthesis of carbon spheres through in-situ enwrapping around silver nanoparticles(CS–Ag NPs). Since mesoporous carbon spheres can provide the location for combining Ag NPs and other agents, one-step synthesis of glutathione-stabilized CS–Ag NPs could be readily realized by photoreduction. TEM characterization of CS–Ag NPs nanocomposites illustrates that Ag NPs were superbly wrapped inside the carbon spheres and also adhered to the surfaces of the carbon spheres. These porous CS–Ag NPs show excellent fluorescence and effective antibacterial efficiency, exhibiting ideal lengthened activities against Escherichia coli and Staphylococcus aureus compared with bare Ag NPs. The relevant rationale behind it could be attributed to the fact that CS–Ag NPs nanocomposites can provide some excellent niches for the durable and slow release of silver ions. This raises the possibility of promising applications of CS–Ag NPs nanocomposites as excellent antibacterial agents for the efficient monitoring of some disease-related bacteria.