Explorations of new second harmonic generation materials in Ag^+-Hg^2+/Bi^3+-selenites systems afforded three new silver selenium oxides, namely, Ag4 Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4)(2) and Ag5 Bi(SeO3)4(3). Th...Explorations of new second harmonic generation materials in Ag^+-Hg^2+/Bi^3+-selenites systems afforded three new silver selenium oxides, namely, Ag4 Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4)(2) and Ag5 Bi(SeO3)4(3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3 D open framework with 4-, 6-and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4(KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 e V respectively. Theoretical calculations disclose that compounds2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.展开更多
Trifluoromethylation reactions are important transformations in the research and development of drugs, agrochemicals and functional materials. An oxidation/reduction process of trifluoromethyl-containing compounds is ...Trifluoromethylation reactions are important transformations in the research and development of drugs, agrochemicals and functional materials. An oxidation/reduction process of trifluoromethyl-containing compounds is thought to be involved in many recently tested catalytic trifluoromethylation reactions. To provide helpful physical chemical data for mechanistic studies on trifluoromethylation reactions, the redox potentials of a variety of trifluoromethyl-containing compounds and trifluoro- methylated radicals were studied by quantum-chemical methods. First, eoB97X-D was found to be a reliable method in predicting the ionization potentials, electron affinities, bond dissociation enthalpies and redox potentials of trifluoromethylcontaining compounds. One-electron absolute redox potentials of 79 trifluoromethyl substrates and 107 trifluoromethylated radicals in acetonitrile were then calculated with this method. The theoretical results were found to be helpful for interpreting experimental observations such as the relative reaction efficiency of different trifluoromethylation reagents. Finally, the bond dissociation free energies (BDFE) of various compounds were found to have a good linear relationship with the related bond dissociation enthalpies (BDE). Based on this observation, a convenient method was proposed to predict one-electron redox potentials of neutral molecules.展开更多
基金supported by the National Natural Science Foundation of China (21773244 and 21875248)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)the Natural Science Foundation of Fujian Province (2018J01025)
文摘Explorations of new second harmonic generation materials in Ag^+-Hg^2+/Bi^3+-selenites systems afforded three new silver selenium oxides, namely, Ag4 Hg(SeO3)2(SeO4)(1), Ag2Bi2(SeO3)3(SeO4)(2) and Ag5 Bi(SeO3)4(3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3 D open framework with 4-, 6-and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4(KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 e V respectively. Theoretical calculations disclose that compounds2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.
基金supported by the National Natural Science Foundation of China(21325208,21172209,21361140372,21202006)Specialized Research Fund for the Doctoral Program(20123402110051)+5 种基金Fundamental Research Funds for the Central Universities(WK2060190025)Chinese Academy of Sciences(KJCX2-EW-J02)Fok Ying Tung Education FoundationAnhui Provincial Natural Science Foundation(1308085QB38)China Grid project funded by Ministry of Education of Chinathe supercomputer center of Shanghai and University of Science and Technology of China
文摘Trifluoromethylation reactions are important transformations in the research and development of drugs, agrochemicals and functional materials. An oxidation/reduction process of trifluoromethyl-containing compounds is thought to be involved in many recently tested catalytic trifluoromethylation reactions. To provide helpful physical chemical data for mechanistic studies on trifluoromethylation reactions, the redox potentials of a variety of trifluoromethyl-containing compounds and trifluoro- methylated radicals were studied by quantum-chemical methods. First, eoB97X-D was found to be a reliable method in predicting the ionization potentials, electron affinities, bond dissociation enthalpies and redox potentials of trifluoromethylcontaining compounds. One-electron absolute redox potentials of 79 trifluoromethyl substrates and 107 trifluoromethylated radicals in acetonitrile were then calculated with this method. The theoretical results were found to be helpful for interpreting experimental observations such as the relative reaction efficiency of different trifluoromethylation reagents. Finally, the bond dissociation free energies (BDFE) of various compounds were found to have a good linear relationship with the related bond dissociation enthalpies (BDE). Based on this observation, a convenient method was proposed to predict one-electron redox potentials of neutral molecules.