This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology ...This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.展开更多
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金financially supported in part by the National Key Research and Development Program of China(No.2017YFC0602901)。
文摘This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.