Endohedral metallofullerene Gd@C2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Cd@C(2n) fo...Endohedral metallofullerene Gd@C2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Cd@C(2n) for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C(82),Gd@C(74) were considered to be fairly stable and soluble metallofullerene species.展开更多
Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increa...Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.展开更多
Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activa...Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.展开更多
Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-...Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols.展开更多
The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional...The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.展开更多
Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2...Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.展开更多
Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregatio...Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregation or coalescence.A top‐down strategy is used to synthesize atomically dispersed metal catalysts,based on supported Ag nanoparticles.The changes of the geometric and electronic structures of the Ag atoms during the top‐down process are studied using the in situ synchrotron X‐ray diffraction technique,ex situ X‐ray absorption spectroscopy,and transmission electron microscopy.The experimental results,coupled with the density functional theory calculations,demonstrate that the electronic perturbation of the Ag frontier orbitals,induced by the Ag‐O interactions at the perimeter of the metal‐support interface,is the driving force of the top‐down process.The top‐down synthesis has two important functions:to increase the number of catalytic active sites and to facilitate the study of complex reaction mechanisms(e.g.,formaldehyde oxidation)by developing single‐site model catalysts.展开更多
A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface ...A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.展开更多
Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It h...Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.展开更多
The development of highly efficient and costeffective oxygen evolution reaction(OER)electrocatalysts for renewable energy systems is vitally essential.Modulation of the electronic structure through heteroatom doping i...The development of highly efficient and costeffective oxygen evolution reaction(OER)electrocatalysts for renewable energy systems is vitally essential.Modulation of the electronic structure through heteroatom doping is considered as one of the most potential strategies to boost OER performances.Herein,a rational design of Mn-doped NiFe layered double hydroxide/reduced graphene oxide(Mn-NiFe LDH/rGO)is demonstrated by a facile hydrothermal approach,which exhibits outstanding OER activity and durability.Experimental results and density functional theory(DFT)calculations manifest that the introduction of Mn can reprogram the electronic structure of surface active sites and alter the intermediate adsorption energy,consequently reducing the potential limiting activation energy for OER.Specifically,the optimal Mn-NiFe LDH/rGO composite shows an enhanced OER performance with an ultralow overpotential of 240 mV@10 mA cm^(-2),Tafel slope of 40.0 mV dec^(-1) and excellent stability.Such superior OER activity is comparable to those of the recently reported state-of-the-art OER catalysts.This work presents an advanced strategy for designing electrocatalysts with high activity and low cost for energy conversion applications.展开更多
文摘Endohedral metallofullerene Gd@C2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Cd@C(2n) for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C(82),Gd@C(74) were considered to be fairly stable and soluble metallofullerene species.
文摘Oxygen evolution reaction(OER),as an important half‐reaction involved in water splitting,has been intensely studied since the last century.Transition metal phosphide and sulfide‐based compounds have attracted increasing attention as active OER catalysts due to their excellent physical and chemical characters,and massive efforts have been devoted to improving the phosphide and sulfide‐based materials with better activity and stability in recent years.In this review,the recent progress on phosphide and sulfide‐based OER electrocatalysts in terms of chemical properties,synthetic methodologies,catalytic performances evaluation and improvement strategy is reviewed.The most accepted reaction pathways as well as the thermodynamics and electrochemistry of the OER are firstly introduced in brief,followed by a summary of the recent research and optimization strategy of phosphide and sulfide‐based OER electrocatalysts.Finally,some mechanistic studies of the active phase of phosphide and sulfide‐based compounds are discussed to give insight into the nature of active catalytic sites.It is expected to indicate guidance for further improving the performances of phosphide and sulfide‐based OER electrocatalysts.
文摘Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.
文摘Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols.
文摘The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.
文摘Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.
基金supported by the National Natural Science Foundation of China(21477023)the Science and Technology Commission of Shanghai Municipality(14JC1400400)~~
文摘Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregation or coalescence.A top‐down strategy is used to synthesize atomically dispersed metal catalysts,based on supported Ag nanoparticles.The changes of the geometric and electronic structures of the Ag atoms during the top‐down process are studied using the in situ synchrotron X‐ray diffraction technique,ex situ X‐ray absorption spectroscopy,and transmission electron microscopy.The experimental results,coupled with the density functional theory calculations,demonstrate that the electronic perturbation of the Ag frontier orbitals,induced by the Ag‐O interactions at the perimeter of the metal‐support interface,is the driving force of the top‐down process.The top‐down synthesis has two important functions:to increase the number of catalytic active sites and to facilitate the study of complex reaction mechanisms(e.g.,formaldehyde oxidation)by developing single‐site model catalysts.
基金supported by the National Natural Science Foundation of China (Nos.51274104,50874052)the National Basic Research Program of China (No.2011CB933700)。
文摘A continuous online in situ attenuated total reflection Fourier-transform infrared(ATR-FTIR)spectroscopic technique was used to investigate the adsorption and desorption kinetics of heptyl xanthate(KHX)on the surface of ZnO and Cu(Ⅱ)activated ZnO.The results showed that Cu(Ⅱ)facilitated the xanthate adsorption process on the surface,and led to the formation of cuprous xanthate(CuX),dixanthogen(X_(2))and xanthate aggregates.The adsorption of xanthate on the surface of ZnO and Cu(Ⅱ)activated ZnO was found to both follow the pseudo-first-order kinetic model.When the NaOH solution was used as a desorption agent,the adsorbed xanthate can largely be removed due to the competition between OH^(−)and HX−.However,for Cu(Ⅱ)activated ZnO,the peak intensities at 1197 and 1082 cm^(−1) had no obvious weakening,and the absorption intensities at 1261 and 1026 cm^(−1) increased in the first 5 min,indicating an ion-exchange reaction between OH^(−)and surface zinc bonded xanthate HX−and the reorganization of adsorbed xanthate.
基金supported by the National Natural Science Foundation of China (21701043, 21573066, and 51402100)the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009)the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and Shenzhen Science and Technology Program (JCYJ20170306141659388)
文摘Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.
基金the National Natural Science Foundation of China(51902003 and 21771003)Anhui Province Natural Science Foundation(2008085QB53)the Natural Science Research Project of Anhui Province Education Department(KJ2019A0581)。
文摘The development of highly efficient and costeffective oxygen evolution reaction(OER)electrocatalysts for renewable energy systems is vitally essential.Modulation of the electronic structure through heteroatom doping is considered as one of the most potential strategies to boost OER performances.Herein,a rational design of Mn-doped NiFe layered double hydroxide/reduced graphene oxide(Mn-NiFe LDH/rGO)is demonstrated by a facile hydrothermal approach,which exhibits outstanding OER activity and durability.Experimental results and density functional theory(DFT)calculations manifest that the introduction of Mn can reprogram the electronic structure of surface active sites and alter the intermediate adsorption energy,consequently reducing the potential limiting activation energy for OER.Specifically,the optimal Mn-NiFe LDH/rGO composite shows an enhanced OER performance with an ultralow overpotential of 240 mV@10 mA cm^(-2),Tafel slope of 40.0 mV dec^(-1) and excellent stability.Such superior OER activity is comparable to those of the recently reported state-of-the-art OER catalysts.This work presents an advanced strategy for designing electrocatalysts with high activity and low cost for energy conversion applications.