Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and sup...Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and supernatant liquids from anaerobic sludge digesters were analyzed for total Kjeldahl nitrogen (TKN), total nitrogen (TN), total chemical oxygen demand (TCOD), biodegradable chemical oxygen demand (bCOD), and biochemical oxygen demand (BOD). Nitrogen removal efficiencies in the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP were evaluated. Inadequate nitrogen removal at the Nonghkaem centralized WWTP was found during the summer period. Influent ratios of bCOD:N at the Nonghkaem plant and the Suvarnabhumi Airport plant were 2.42:1-5.45:1 and 4.1:1-6.5:1, respectively. The efficacy of addition of molasses as a carbon source for enriched denitrifying culture in a BNR process at Nonghkaem was studied. Fluorescent in situ hybridization technique (FISH) was used to identify specific nitrifying bacteria (Nitrosomonas spp., Nitrobacter spp. and Nitrospira spp.). Nitrospira spp. was the most prevalent species in the aeration tank at the Nonghkaem WWTP. This result from FISH suggests that there were significantly low oxygen and nitrite concentration in the aeration tank at the Nonghkaem WWTP during a period of low nitrogen removal.展开更多
Quantum entanglement dynamics of two Tavis-Cummings atoms interacting with the quantum light sourcesin a cavity is investigated.The results show the phenomenon that the concurrence disappears abruptly in a finite time...Quantum entanglement dynamics of two Tavis-Cummings atoms interacting with the quantum light sourcesin a cavity is investigated.The results show the phenomenon that the concurrence disappears abruptly in a finite time,which depends on the initial atomic states and the properties of squeezed states.We find that there are two decoherencefreestates in squeezed vacuum fields:one is the singlet state,and the other entangled state is the state that combinesboth excited states and ground states with a relative phase being equal to the phase of the squeezed state.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
文摘Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and supernatant liquids from anaerobic sludge digesters were analyzed for total Kjeldahl nitrogen (TKN), total nitrogen (TN), total chemical oxygen demand (TCOD), biodegradable chemical oxygen demand (bCOD), and biochemical oxygen demand (BOD). Nitrogen removal efficiencies in the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP were evaluated. Inadequate nitrogen removal at the Nonghkaem centralized WWTP was found during the summer period. Influent ratios of bCOD:N at the Nonghkaem plant and the Suvarnabhumi Airport plant were 2.42:1-5.45:1 and 4.1:1-6.5:1, respectively. The efficacy of addition of molasses as a carbon source for enriched denitrifying culture in a BNR process at Nonghkaem was studied. Fluorescent in situ hybridization technique (FISH) was used to identify specific nitrifying bacteria (Nitrosomonas spp., Nitrobacter spp. and Nitrospira spp.). Nitrospira spp. was the most prevalent species in the aeration tank at the Nonghkaem WWTP. This result from FISH suggests that there were significantly low oxygen and nitrite concentration in the aeration tank at the Nonghkaem WWTP during a period of low nitrogen removal.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10974125, 60978017, and 60821004in part by the Educational Committee of Fujian Province (JA09041)Fujian Normal University (2008100220)
文摘Quantum entanglement dynamics of two Tavis-Cummings atoms interacting with the quantum light sourcesin a cavity is investigated.The results show the phenomenon that the concurrence disappears abruptly in a finite time,which depends on the initial atomic states and the properties of squeezed states.We find that there are two decoherencefreestates in squeezed vacuum fields:one is the singlet state,and the other entangled state is the state that combinesboth excited states and ground states with a relative phase being equal to the phase of the squeezed state.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.