The enhanced reduction mechanism and kinetics of different Na_(2)CO_(3) additions in the carbothermic reduction of ilmenite concentrate were investigated.The reduction process was carried out at different heating rate...The enhanced reduction mechanism and kinetics of different Na_(2)CO_(3) additions in the carbothermic reduction of ilmenite concentrate were investigated.The reduction process was carried out at different heating rates in a thermogravimetry facility,and the kinetics was studied using the Starink method.The results indicate that Na_(2)CO_(3) addition enhanced the reduction effect as well as reduced the initial temperature of the reaction and the activation energy by increasing reactant activity in reactant form;however,it deteriorated the late-stage kinetic conditions by generating a molten phase,thereby reducing the reaction rate in the late stages of reduction.The average apparent activation energies of ilmenite concentrate with 0%,3%,and 6%Na_(2)CO_(3) are 447,289,and 430 kJ/mol,respectively.The results from kinetics parameters confirm that Na_(2)CO_(3) addition accelerated the reduction kinetics;however,excessive addition worsened the reduction kinetics.展开更多
A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under whi...A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.展开更多
Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and ...Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.展开更多
Theoretical studies of F atom reaction with trans-1,3-butadiene were carried out at the CCSD(T)/6- 311G(d,p)/B3LYP/6-311G(d,p) levels. Energies and structures for all reactants, products and transition states we...Theoretical studies of F atom reaction with trans-1,3-butadiene were carried out at the CCSD(T)/6- 311G(d,p)/B3LYP/6-311G(d,p) levels. Energies and structures for all reactants, products and transition states were determined. Two reaction pathways involving the formation of the complexes CH2CHCHFCH2 and CH2CHCHCH2F were found in this reaction. Theoretical results suggest that the H atom channel observed in previous crossed beam experiment occurs likely via these two long-lived complex formation pathways. For the complex CH2CHCHFCH2 pathway, another reaction channel (C2H3+C2H3F) is also accessible. Relative importance of the C2H3+C2H3F channel versus the H formation channel via the same reaction pathway has also been estimated, suggesting that it would be difficult to observe the C2H3+C2H3F channel in a crossed molecular beam experiment. Theoretical analysis also shows that the HF formation proceeds via direct abstraction mechanisms, though it is likely a minor process in this reaction.展开更多
A new ball screw dynamic model was developed under the adequate consideration of the interaction in the screw-nut assembly (not only the mutual-coupling factors but also the self-coupling factors) . Based on this mode...A new ball screw dynamic model was developed under the adequate consideration of the interaction in the screw-nut assembly (not only the mutual-coupling factors but also the self-coupling factors) . Based on this model,the multi-flexible body (MFB)dynamic model of ball screw feed drive system was then founded in order to take full account of the influencing factor of system flexibility and study the dynamic behaviors of the whole mechanical transmissions. Moreover,the MFB based state space modeling was proposed by modal state space method, which extraced the eigenmodes of more dominant modes and applied them into an MFB state space model,and realized the integrated model of servo drives and MFB mechanical transmissions more effectively and efficiently. In conclusion,the comparisons between simulations and experimental results show: the stiffness formulation of the ball screw assembly derived above is a suitable method for achieving accurate MFB models of ball screw mechanical transmission systems,this proposed MFB model is valid,and the integrated model of ball screw feed drive system is accurate and reliable. All these provide the important approaches and guidelines for dynamic characteristic study and selection of control parameters in the machine tool design period.展开更多
Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen p...Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.展开更多
It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely ...It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely time-consuming and very costly. This work investigates the use of pulse-echo ultrasound to detect internal damages in wind turbine blades without the necessity to ship the blades off-site. A prototype 2D ultrasonic NDT (non-destructive testing) system has been developed and optimised for in-situ wind turbine blade inspection. The system is designed to be light weight so it can be easily carried by an inspector onto the wind turbine blade for in-situ inspection. It can be operated in 1D A-scan, 2D C-scan or 3D volume scan. A software system has been developed to control the automated scanning and show the damage areas in a 2D/3D map with different colours so that the inspector can easily identify the defective areas. Experiments on GFRP (glass fibre reinforced plastics) and wind turbine blades (made of GFRP) samples showed that internal defects can be detected. The main advantages of this system are fully automated 2D spatial scanning and the ability to alert the user to the damage of the inspected sample. It is intended to be used for in-situ inspection to save maintenance time and hence considered to be economically beneficial for the wind energy industry.展开更多
In this paper,the possibility of the monatomic chain (MC) formation for ZnO material was studied by molecular dynamics (MD) simulation.The process of MC formation and the effects of temperature,strain rate and size we...In this paper,the possibility of the monatomic chain (MC) formation for ZnO material was studied by molecular dynamics (MD) simulation.The process of MC formation and the effects of temperature,strain rate and size were studied extensively.The tensile process can be divided to be five stages and the ZnO diatomic chain (DC) can be found.The MD results show that most atoms in MC came from the original surface of ZnO nanowires (NWs).Temperature and strain rate are two important factors affecting the process,and both high temperature and low strain rate in a certain range would be beneficial to the formation of DC.Moreover,the effects of strain rate and temperature could attribute to the Arrhenius model and the energy release mechanism.Furthermore,multi-shell structure was found for the samples under tensile strain and the layer-layer distance was about 3.Our studies based on density functional theory showed that the most stable structure of ZnO DC was confirmed to be linear,and the I-V curve was also got using ATK.展开更多
The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained...The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered.展开更多
The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indica...The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.展开更多
基金supported by the National Natural Science Foundation of China (No. U1902217)。
文摘The enhanced reduction mechanism and kinetics of different Na_(2)CO_(3) additions in the carbothermic reduction of ilmenite concentrate were investigated.The reduction process was carried out at different heating rates in a thermogravimetry facility,and the kinetics was studied using the Starink method.The results indicate that Na_(2)CO_(3) addition enhanced the reduction effect as well as reduced the initial temperature of the reaction and the activation energy by increasing reactant activity in reactant form;however,it deteriorated the late-stage kinetic conditions by generating a molten phase,thereby reducing the reaction rate in the late stages of reduction.The average apparent activation energies of ilmenite concentrate with 0%,3%,and 6%Na_(2)CO_(3) are 447,289,and 430 kJ/mol,respectively.The results from kinetics parameters confirm that Na_(2)CO_(3) addition accelerated the reduction kinetics;however,excessive addition worsened the reduction kinetics.
基金Project supported by the National Natural Science Foundation ofChina (No. 10332030), the Special Fund for Doctor Programs inInstitutions of Higher Learning of China (No. 20020335092), andthe Zhejiang Provincial Natural Science Foundation (No. 101046),China
文摘A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.
基金Project(51674298)supported by the National Natural Science Foundation of ChinaProject supported by Anhui Province Research and Development Innovation Program,China。
文摘Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.
基金V. ACKN0WLEDGMENT This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology of China, and the National Natural Science Foundation of China.
文摘Theoretical studies of F atom reaction with trans-1,3-butadiene were carried out at the CCSD(T)/6- 311G(d,p)/B3LYP/6-311G(d,p) levels. Energies and structures for all reactants, products and transition states were determined. Two reaction pathways involving the formation of the complexes CH2CHCHFCH2 and CH2CHCHCH2F were found in this reaction. Theoretical results suggest that the H atom channel observed in previous crossed beam experiment occurs likely via these two long-lived complex formation pathways. For the complex CH2CHCHFCH2 pathway, another reaction channel (C2H3+C2H3F) is also accessible. Relative importance of the C2H3+C2H3F channel versus the H formation channel via the same reaction pathway has also been estimated, suggesting that it would be difficult to observe the C2H3+C2H3F channel in a crossed molecular beam experiment. Theoretical analysis also shows that the HF formation proceeds via direct abstraction mechanisms, though it is likely a minor process in this reaction.
基金National Science and Technology Major Project of China(No.2011ZX04016-02)
文摘A new ball screw dynamic model was developed under the adequate consideration of the interaction in the screw-nut assembly (not only the mutual-coupling factors but also the self-coupling factors) . Based on this model,the multi-flexible body (MFB)dynamic model of ball screw feed drive system was then founded in order to take full account of the influencing factor of system flexibility and study the dynamic behaviors of the whole mechanical transmissions. Moreover,the MFB based state space modeling was proposed by modal state space method, which extraced the eigenmodes of more dominant modes and applied them into an MFB state space model,and realized the integrated model of servo drives and MFB mechanical transmissions more effectively and efficiently. In conclusion,the comparisons between simulations and experimental results show: the stiffness formulation of the ball screw assembly derived above is a suitable method for achieving accurate MFB models of ball screw mechanical transmission systems,this proposed MFB model is valid,and the integrated model of ball screw feed drive system is accurate and reliable. All these provide the important approaches and guidelines for dynamic characteristic study and selection of control parameters in the machine tool design period.
基金supported by the JSPS KAKENHI(16H02268)from MEXTJapan and by the CRI(2012R1A3A2048842)Basic Science Research Program(NRF-2020R1I1A1A01074630)through NRF of Korea.
文摘Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.
文摘It is crucial to maintain wind turbine blades regularly, due to the high stress leading to defects or damage. Conventional methods require shipping the blades to a workshop for off-site inspection, which is extremely time-consuming and very costly. This work investigates the use of pulse-echo ultrasound to detect internal damages in wind turbine blades without the necessity to ship the blades off-site. A prototype 2D ultrasonic NDT (non-destructive testing) system has been developed and optimised for in-situ wind turbine blade inspection. The system is designed to be light weight so it can be easily carried by an inspector onto the wind turbine blade for in-situ inspection. It can be operated in 1D A-scan, 2D C-scan or 3D volume scan. A software system has been developed to control the automated scanning and show the damage areas in a 2D/3D map with different colours so that the inspector can easily identify the defective areas. Experiments on GFRP (glass fibre reinforced plastics) and wind turbine blades (made of GFRP) samples showed that internal defects can be detected. The main advantages of this system are fully automated 2D spatial scanning and the ability to alert the user to the damage of the inspected sample. It is intended to be used for in-situ inspection to save maintenance time and hence considered to be economically beneficial for the wind energy industry.
基金supported by the National Natural Science Foundation of China (Grant No.60936001)
文摘In this paper,the possibility of the monatomic chain (MC) formation for ZnO material was studied by molecular dynamics (MD) simulation.The process of MC formation and the effects of temperature,strain rate and size were studied extensively.The tensile process can be divided to be five stages and the ZnO diatomic chain (DC) can be found.The MD results show that most atoms in MC came from the original surface of ZnO nanowires (NWs).Temperature and strain rate are two important factors affecting the process,and both high temperature and low strain rate in a certain range would be beneficial to the formation of DC.Moreover,the effects of strain rate and temperature could attribute to the Arrhenius model and the energy release mechanism.Furthermore,multi-shell structure was found for the samples under tensile strain and the layer-layer distance was about 3.Our studies based on density functional theory showed that the most stable structure of ZnO DC was confirmed to be linear,and the I-V curve was also got using ATK.
基金supported by the National Natural Science Foundation of China(Grant Nos.51376101&51356001)
文摘The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered.
基金supported by the National Natural Science Foundation of China (Grant Nos.50771104,50871122)
文摘The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.