The amount of sulfur in SO2 discharged in volcanic eruptions exceeds that available for degassing from the erupted magma.This geological conun drum,known as the"sulfur excess",has been the subject of conside...The amount of sulfur in SO2 discharged in volcanic eruptions exceeds that available for degassing from the erupted magma.This geological conun drum,known as the"sulfur excess",has been the subject of considerable interests but remains an open question.Here,in a systematic computational investigation of sulfur-oxygen compounds under pressure,a hitherto unknown S_(3)O_(4) compound containing a mixture of sulfur oxidation states+11 and+IV is predicted to be stable at pressures above 79 GPa.We speculate that S_(3)O_(4) may be produced via redox reactions involving subducted S-bearing minerals(e.g.,sulfates and sulfides)with iron and goethite under high-pressure conditions of the deep lower mantle,decomposing to SO2 and S at shallow depths.S_(3)O_(4) may thus be a key intermediate in promoting decomposition of sulfates to release SO2,offering an alter native source of excess sulfur released during explosive eruptions.These findings provide a possible resolution of the"excess sulfur degassing"paradox and a viable mechanism for the exchange of S between Earth's surface and the lower mantle in the deep sulfur cycle.展开更多
基金supported by the National Natural Science Foundation of China(12034009,91961204,11774127,12174142,11404128,11822404,52090024 and 11974134)the Program for Science and Technology Innovative Research Team of Jilin University。
文摘The amount of sulfur in SO2 discharged in volcanic eruptions exceeds that available for degassing from the erupted magma.This geological conun drum,known as the"sulfur excess",has been the subject of considerable interests but remains an open question.Here,in a systematic computational investigation of sulfur-oxygen compounds under pressure,a hitherto unknown S_(3)O_(4) compound containing a mixture of sulfur oxidation states+11 and+IV is predicted to be stable at pressures above 79 GPa.We speculate that S_(3)O_(4) may be produced via redox reactions involving subducted S-bearing minerals(e.g.,sulfates and sulfides)with iron and goethite under high-pressure conditions of the deep lower mantle,decomposing to SO2 and S at shallow depths.S_(3)O_(4) may thus be a key intermediate in promoting decomposition of sulfates to release SO2,offering an alter native source of excess sulfur released during explosive eruptions.These findings provide a possible resolution of the"excess sulfur degassing"paradox and a viable mechanism for the exchange of S between Earth's surface and the lower mantle in the deep sulfur cycle.