Regulating the selectivity of catalysts in selective hydrogenation reactions at the atomic level is highly desirable but remains a grand challenge. Here we report a simple and practical strategy to synthesize a monoli...Regulating the selectivity of catalysts in selective hydrogenation reactions at the atomic level is highly desirable but remains a grand challenge. Here we report a simple and practical strategy to synthesize a monolithic single-atom catalyst(SAC) with isolated Pd atoms supported on bulk nitrogen-doped carbon foams(Pd-SAs/CNF). Moreover, we demonstrate that the single-atom Pd sites with unique electronic structure endow Pd-SAs/CNF with an isolated site effect, leading to excellent activity and selectivity in 4-nitrophenylacetylene semi-hydrogenation reaction. In addition, benefiting from the great integrity and excellent mechanical strength, monolithic Pd-SAs/CNF catalyst is easy to separate from the reaction system for conducting the subsequent recycling. The cyclic test demonstrates the excellent reusability and stability of monolithic Pd-SAs/CNF catalyst.The discovery of isolated site effect provides a new approach to design highly selective catalysts. And the development of monolithic SACs provides new opportunities to advance the practical applications of single-atom catalysts.展开更多
基金supported by the National Key R&D Program of China (2018YFA0702003)the National Natural Science Foundation of China (21890383,21671117,21871159 and 21901135)+1 种基金the National Postdoctoral Program for Innovative Talents (BX20180160)the China Postdoctoral Science Foundation (2018M640113)。
文摘Regulating the selectivity of catalysts in selective hydrogenation reactions at the atomic level is highly desirable but remains a grand challenge. Here we report a simple and practical strategy to synthesize a monolithic single-atom catalyst(SAC) with isolated Pd atoms supported on bulk nitrogen-doped carbon foams(Pd-SAs/CNF). Moreover, we demonstrate that the single-atom Pd sites with unique electronic structure endow Pd-SAs/CNF with an isolated site effect, leading to excellent activity and selectivity in 4-nitrophenylacetylene semi-hydrogenation reaction. In addition, benefiting from the great integrity and excellent mechanical strength, monolithic Pd-SAs/CNF catalyst is easy to separate from the reaction system for conducting the subsequent recycling. The cyclic test demonstrates the excellent reusability and stability of monolithic Pd-SAs/CNF catalyst.The discovery of isolated site effect provides a new approach to design highly selective catalysts. And the development of monolithic SACs provides new opportunities to advance the practical applications of single-atom catalysts.