The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis ...The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis methods, new thoughts and methodologies have been constructed for the Loess Plateau research. This paper introduces the characteristics of DEM data, analyses the development stages of DEM applied in the Loess Plateau research, and discusses its further possible research direction. More discussions are focused on slope spectrum and its concept, as well as the significance in the Loess Plateau research.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been form...Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been formed in a long geological period, and in this period, various rocks have undergone long-term consolidation of geostatic stress and tectonic stress; therefore, under in-situ conditions, their density and modulus of deformation are relatively high. Due to its fragmentary nature, once being exposed to the earth's surface, the structure of weak rock zone will soon be loosened, its density will be reduced, and its modulus of deformation will also be reduced significantly. Generally, weak rock zone can be found in large construction projects, especially in the dam foundation rocks of hydropower stations. These rocks cannot be eliminated completely by excavation. Furthermore, all tests nowadays are carried out after the exposure of weak rock zone, modulus of deformation under in-situ conditions cannot be revealed. In this paper, a test method explored by the authors has been introduced. This method is a whole multilayered medium deformation method. It is unnecessary to eliminate the relatively complete rocks covering on weak rock zone. A theoretical formula to obtain the modulus of deformation in various mediums has also been introduced. On-site comparative trials and indoor deformation modulus tests under equivalent density conditions have been carried out. We adopted several methods for the prediction researches of the deformation modulus of weak rock zone under in-situ conditions, and revealed a fact that under in-situ conditions, the deformation modulus of weak rock zone are several times higher than the test results obtained after the exposure. In a perspective of geological engineering, the research findings have fundamentally changed peoples' concepts on the deformation modulus of weak rock zone, provided important theories and methods for precise definition of deformation modulus of deep weak rock zone under cap rock conditions, as well as for reasonable engineering applications.展开更多
Beethoven is a famous German pianist, composer, and conductor, and he set the culmination of Western classical, created a romantic music camp precedent. The size of his music in general is very ambitious, mostly conce...Beethoven is a famous German pianist, composer, and conductor, and he set the culmination of Western classical, created a romantic music camp precedent. The size of his music in general is very ambitious, mostly concertos, symphonies, operas and other large works, technical approach and structure used is quite complex, people are left with a deep impression. But it works, while small piano pieces, also has music research value, "dedicated to Alice" is one of the few Beethoven piano pieces. This paper focuses on creative background "dedicated to Alice," this elaborate piano works by the complexity of the analysis of the structure of this work is that it reflects the author' s ideological soul to explore their musical value.展开更多
Objective: To develop a novel method of spinal pedical stereotaxy by reverse engineering and rapid prototyping techniques, and to validate its accuracy by experimental and clinical studies. Methods: A 3D reconstruc...Objective: To develop a novel method of spinal pedical stereotaxy by reverse engineering and rapid prototyping techniques, and to validate its accuracy by experimental and clinical studies. Methods: A 3D reconstruction model for the desired lumbar vertebra was generated by using the Mimics 10.11 software, and the optimal screw size and orientation were determined using the reverse engineering software. Afterwards, a drill template was created by reverse engineering principle, whose surface was the antitemplate of the vertebral surface. The drill template and its corresponding vertebra were manufactured using the rapid prototyping technique. Results: The accuracy of the drill template was confinned by drilling screw trajectory into the vertebral biomodel preoperatively. This method also showed its ability to customize the placement and size of each screw based on the unique morphology of the lumbar vertebra.The drill template fits the postural surface of the vertebra very well in the cadaver experiment. Postoperative CT scans for controlling the pedicle bore showed that the personalized template had a high precision in cadaver experiment and clinical application. No misplacement occurred by using the personalized template. During surgery, no additional computer assistance was needed. Conclusions: The authors have developed a novel drill template for lumbar pedicle screw placement with good applicability and high accuracy. The potential use of drill templates to place lumbar pedicle screws is promising, Our methodology appears to provide an accurate technique and trajectory for pedicle screw placement in the lumbar spine.展开更多
文摘The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis methods, new thoughts and methodologies have been constructed for the Loess Plateau research. This paper introduces the characteristics of DEM data, analyses the development stages of DEM applied in the Loess Plateau research, and discusses its further possible research direction. More discussions are focused on slope spectrum and its concept, as well as the significance in the Loess Plateau research.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
文摘Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been formed in a long geological period, and in this period, various rocks have undergone long-term consolidation of geostatic stress and tectonic stress; therefore, under in-situ conditions, their density and modulus of deformation are relatively high. Due to its fragmentary nature, once being exposed to the earth's surface, the structure of weak rock zone will soon be loosened, its density will be reduced, and its modulus of deformation will also be reduced significantly. Generally, weak rock zone can be found in large construction projects, especially in the dam foundation rocks of hydropower stations. These rocks cannot be eliminated completely by excavation. Furthermore, all tests nowadays are carried out after the exposure of weak rock zone, modulus of deformation under in-situ conditions cannot be revealed. In this paper, a test method explored by the authors has been introduced. This method is a whole multilayered medium deformation method. It is unnecessary to eliminate the relatively complete rocks covering on weak rock zone. A theoretical formula to obtain the modulus of deformation in various mediums has also been introduced. On-site comparative trials and indoor deformation modulus tests under equivalent density conditions have been carried out. We adopted several methods for the prediction researches of the deformation modulus of weak rock zone under in-situ conditions, and revealed a fact that under in-situ conditions, the deformation modulus of weak rock zone are several times higher than the test results obtained after the exposure. In a perspective of geological engineering, the research findings have fundamentally changed peoples' concepts on the deformation modulus of weak rock zone, provided important theories and methods for precise definition of deformation modulus of deep weak rock zone under cap rock conditions, as well as for reasonable engineering applications.
文摘Beethoven is a famous German pianist, composer, and conductor, and he set the culmination of Western classical, created a romantic music camp precedent. The size of his music in general is very ambitious, mostly concertos, symphonies, operas and other large works, technical approach and structure used is quite complex, people are left with a deep impression. But it works, while small piano pieces, also has music research value, "dedicated to Alice" is one of the few Beethoven piano pieces. This paper focuses on creative background "dedicated to Alice," this elaborate piano works by the complexity of the analysis of the structure of this work is that it reflects the author' s ideological soul to explore their musical value.
基金This project was supported by China Postdoctoral Science Foundation (20080431420) and Yunnan Natural Science Foundation (2008CD210).
文摘Objective: To develop a novel method of spinal pedical stereotaxy by reverse engineering and rapid prototyping techniques, and to validate its accuracy by experimental and clinical studies. Methods: A 3D reconstruction model for the desired lumbar vertebra was generated by using the Mimics 10.11 software, and the optimal screw size and orientation were determined using the reverse engineering software. Afterwards, a drill template was created by reverse engineering principle, whose surface was the antitemplate of the vertebral surface. The drill template and its corresponding vertebra were manufactured using the rapid prototyping technique. Results: The accuracy of the drill template was confinned by drilling screw trajectory into the vertebral biomodel preoperatively. This method also showed its ability to customize the placement and size of each screw based on the unique morphology of the lumbar vertebra.The drill template fits the postural surface of the vertebra very well in the cadaver experiment. Postoperative CT scans for controlling the pedicle bore showed that the personalized template had a high precision in cadaver experiment and clinical application. No misplacement occurred by using the personalized template. During surgery, no additional computer assistance was needed. Conclusions: The authors have developed a novel drill template for lumbar pedicle screw placement with good applicability and high accuracy. The potential use of drill templates to place lumbar pedicle screws is promising, Our methodology appears to provide an accurate technique and trajectory for pedicle screw placement in the lumbar spine.