Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge,...Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge, this paper proposes a framework, called HooklMA, to detect compromised kernel hooks by using hardware debugging features. The key contribution of the work is that context information is captured from hardware instead of from relatively vulnerable kernel data. Using commodity hardware, a proof-of-concept pro- totype system of HooklMA has been developed. This prototype handles 3 082 dynamic control-flow transfers with related hooks in the kernel space. Experiments show that HooklMA is capable of detecting compomised kernel hooks caused by kernel rootkits. Performance evaluations with UnixBench indicate that runtirre overhead introduced by HooklMA is about 21.5%.展开更多
Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structu...Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system.展开更多
基金The authors would like to thank the anonymous reviewers for their insightful corrnlents that have helped improve the presentation of this paper. The work was supported partially by the National Natural Science Foundation of China under Grants No. 61070192, No.91018008, No. 61170240 the National High-Tech Research Development Program of China under Grant No. 2007AA01ZA14 the Natural Science Foundation of Beijing un- der Grant No. 4122041.
文摘Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge, this paper proposes a framework, called HooklMA, to detect compromised kernel hooks by using hardware debugging features. The key contribution of the work is that context information is captured from hardware instead of from relatively vulnerable kernel data. Using commodity hardware, a proof-of-concept pro- totype system of HooklMA has been developed. This prototype handles 3 082 dynamic control-flow transfers with related hooks in the kernel space. Experiments show that HooklMA is capable of detecting compomised kernel hooks caused by kernel rootkits. Performance evaluations with UnixBench indicate that runtirre overhead introduced by HooklMA is about 21.5%.
基金Supported by the 2015 Industrial Transformation and Upgrading of Strong Base Project(TC150B5C0-29)the National Key Basic Research Program of China(2014CB046400)
文摘Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system.