The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as ...The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.展开更多
The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When t...The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth.展开更多
To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstruct...To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstructure,produced phases and damping capacities of the composites prepared with different particle size of B4C were characterized and analyzed.The results show that the reaction between B4C and Ti tends to be more complete when finer B_(4)C particle was used to prepare the composites.But the microstructure of the as-prepared composites is more homogenous when B4C and Ti have similar particle size.The strain-dependent damping capacities of(B_(4)C+Ti)/Mg composites improve gradually with the increase of strain amplitude,and composites prepared with coarser B4C particles tend to have higher damping capacities.The temperature-dependent damping capacities improve with increasing the measuring temperatures,and the kind of damping capacities of the composites prepared with 5mm B4C are inferior to those of coarser particles.The dominant damping mechanism for the strain-damping capacity is dislocation damping and plastic zone damping,while that for the temperature-damping capacity is interface damping or grain boundary damping.展开更多
Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composi...Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composite with Ti B whiskers. The Ti-6Al-4V alloy and B4 C additive powders were used as raw materials. Two different consolidation techniques, namely press-and-sintering and spark plasma sintering, were selected. It was observed that in-situ Ti B whiskers were formed during sintering in both methods. The changes in size, aspect ratio and distribution of in-situ whiskers in different composite samples were monitored. The effect of spark plasma sintering temperature on the synthesis of in-situ whiskers was also investigated. Based on the microstructural observations(optical microscopy and scanning electron microscopy) and the energy dispersive spectroscopy analysis, it was concluded that increasing the spark plasma sintering temperature from 900 to 1100 °C would lead to the complete formation of in-situ Ti B whiskers and reduced porosity content.展开更多
In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the T...In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.展开更多
An attempt was made to modify the surface of in-situ aluminium matrix composite (AMC) by micro-arc oxidation (MAO). In the microstructure of AMC, CuAl2 reinforcements were generated by introducing 15% CuO into the...An attempt was made to modify the surface of in-situ aluminium matrix composite (AMC) by micro-arc oxidation (MAO). In the microstructure of AMC, CuAl2 reinforcements were generated by introducing 15% CuO into the aluminium melt. AMC was hot forged, homogenised, quenched and artificially aged before the MAO in a KOH, KF and Na2SiO3-containing electrolyte. After the MAO process the surface of the AMC was covered with Al2O3 coating having an effective thickness of about 15μm. Appearance of crack and/or delamination free zones at the periphery of the indent after the Rockwell C adhesion test indicated good adhesion between the composite and the Al2O3 coating. During dry sliding wear tests, this adherent Al2O3coating resisted the destructive action of the Al2O3 ball and provided about 15 times enhancement in wear resistance as compared to the original state.展开更多
The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time an...The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.展开更多
Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition ...Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition metal carbides (TMCs) can suppress carbon precipitation. In this study, Mo2C, a representative of TMCs, is used to study the effects of carbide formation in graphene growth from first principles. Carbon diffusion in Mo2C bulk turns out to be very difficult and it becomes much easier on the Mo2C(001) surface. Therefore, carbon precipitation suppression and graphene growth can be realized simultaneously. A direction depended diffusion behavior is observed on the Mo2C(101) surface, which makes it less favorable for graphene growth compared to the (001) surface.展开更多
The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared thro...The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.展开更多
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to sim...An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.展开更多
基金Project (09003) supported by the Open-Fund Research of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,ChinaProject (JD0805) supported by the Science and Technology Innovation Team,Jiangsu University,China
文摘The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.
文摘The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth.
基金Project(51901095)supported by the National Natural Science Foundation of China。
文摘To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstructure,produced phases and damping capacities of the composites prepared with different particle size of B4C were characterized and analyzed.The results show that the reaction between B4C and Ti tends to be more complete when finer B_(4)C particle was used to prepare the composites.But the microstructure of the as-prepared composites is more homogenous when B4C and Ti have similar particle size.The strain-dependent damping capacities of(B_(4)C+Ti)/Mg composites improve gradually with the increase of strain amplitude,and composites prepared with coarser B4C particles tend to have higher damping capacities.The temperature-dependent damping capacities improve with increasing the measuring temperatures,and the kind of damping capacities of the composites prepared with 5mm B4C are inferior to those of coarser particles.The dominant damping mechanism for the strain-damping capacity is dislocation damping and plastic zone damping,while that for the temperature-damping capacity is interface damping or grain boundary damping.
文摘Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composite with Ti B whiskers. The Ti-6Al-4V alloy and B4 C additive powders were used as raw materials. Two different consolidation techniques, namely press-and-sintering and spark plasma sintering, were selected. It was observed that in-situ Ti B whiskers were formed during sintering in both methods. The changes in size, aspect ratio and distribution of in-situ whiskers in different composite samples were monitored. The effect of spark plasma sintering temperature on the synthesis of in-situ whiskers was also investigated. Based on the microstructural observations(optical microscopy and scanning electron microscopy) and the energy dispersive spectroscopy analysis, it was concluded that increasing the spark plasma sintering temperature from 900 to 1100 °C would lead to the complete formation of in-situ Ti B whiskers and reduced porosity content.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51804349)the China Postdoctoral Science Foundation(2018M632986)the Natural Science Foundation of Hunan Province,China(2019JJ50766).
文摘In-situ 2 vol.%TiB2 particle reinforced Al−xSi−0.3Mg(x=7,9,12,15 wt.%)composites were prepared by the salt−metal reaction,and the microstructures and mechanical properties were investigated.The results show that the TiB2 particles with a diameter of 20−80 nm and the eutectic Si with a length of 1−10μm are the main strengthening phases in the TiB2/Al−xSi−0.3Mg composites.The TiB2 particles promote grain refinement and modify the eutectic Si from needle-like to short-rod shape.However,the strengthening effect of TiB2 particles is weakened as the Si content exceeds the eutectic composition,which can be attributed to the formation of large and irregular primary Si.The axial tensile test results and fractography observations indicate that these composites show more brittle fracture characteristics than the corresponding alloy matrixes.
文摘An attempt was made to modify the surface of in-situ aluminium matrix composite (AMC) by micro-arc oxidation (MAO). In the microstructure of AMC, CuAl2 reinforcements were generated by introducing 15% CuO into the aluminium melt. AMC was hot forged, homogenised, quenched and artificially aged before the MAO in a KOH, KF and Na2SiO3-containing electrolyte. After the MAO process the surface of the AMC was covered with Al2O3 coating having an effective thickness of about 15μm. Appearance of crack and/or delamination free zones at the periphery of the indent after the Rockwell C adhesion test indicated good adhesion between the composite and the Al2O3 coating. During dry sliding wear tests, this adherent Al2O3coating resisted the destructive action of the Al2O3 ball and provided about 15 times enhancement in wear resistance as compared to the original state.
文摘The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.
文摘Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition metal carbides (TMCs) can suppress carbon precipitation. In this study, Mo2C, a representative of TMCs, is used to study the effects of carbide formation in graphene growth from first principles. Carbon diffusion in Mo2C bulk turns out to be very difficult and it becomes much easier on the Mo2C(001) surface. Therefore, carbon precipitation suppression and graphene growth can be realized simultaneously. A direction depended diffusion behavior is observed on the Mo2C(101) surface, which makes it less favorable for graphene growth compared to the (001) surface.
基金Project(2014CB046702) supported by the National Basic Research Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
基金financially supported by the National Natural Science Foundation of China(21701101)the National Key Research and Development Project,Key Projects of Intergovernmental International Innovation Cooperation(2018YFE0118200 and 2016YFF0204402)+4 种基金the Fundamental Research Funds for the Central Universities(18CX06063A)the Key Research and Development Project of Shandong Province(2019JZZY010506)the Scientific Research Awards Foundation for Outstanding Young Scientists of Shandong Province(ZR2018JL010)the Joint Fund of Outstanding Young Talents of Shandong Province(ZR2017BB018)the Program of Qingdao Scientific and Technological Innovation High-level Talents Project(172-1-1-zhc)。
文摘An atomically dispersed FeCo-NC material with the 3D flower-like morphology was used as a unique substrate for the controllable deposition of ultrasmall NiFe layered double hydroxide nanodots(termed as NiFe-NDs)to simultaneously promote the sluggish kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The size-limiting growth of NiFe-NDs(~4.0 nm in diameter)was realized via the confinement of the 3D flower-like mesoporous structure and the rich N/O functionality of FeCo-NC.Benefiting from the distinctive structure with the simultaneously maximum exposure of both OER and ORR active sites,the NiFe-ND/FeCo-NC composite showed an ORR halfwave potential of 0.85 V and an OER potential of 1.66 V in0.1 mol L-1KOH at 10.0 mA cm-2.In-situ Raman analysis suggested the activity of OER was derived from the Ni sites on NiFe-ND/FeCo-NC.Moreover,the NiFe-ND/FeCo-NC-assembled Zn-air battery(ZAB)exhibited a very small discharge-charge voltage gap of 0.87 V at 20 mA cm-2and robust cycling stability.Furthermore,the NiFe-ND/FeCo-NC composite was also applicable for fabricating all-solid-state ZAB to power wearable electronics with superior cycling stability under deformation.Our work could enlighten a new applicable branch of atomically dispersed metal-nitrogen-carbon materials as unique substrates for fabricating multifunctional electrocatalysts.