期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进的TV-L^1平滑光流估计 被引量:8
1
作者 李秀智 尹晓琳 +2 位作者 贾松敏 谭君 赵冠荣 《光学学报》 EI CAS CSCD 北大核心 2013年第10期181-187,共7页
提出将高斯平滑后的数据项和非局部中值滤波相结合的光流算法,以实现降噪并提高光流估计的稳健性和精度。该方法的数据项使用稳健的L1范数,通过高斯滤波对数据项平滑处理,抑制噪声干扰,并借助原始-对偶算法改善变分光流的求解效率;为进... 提出将高斯平滑后的数据项和非局部中值滤波相结合的光流算法,以实现降噪并提高光流估计的稳健性和精度。该方法的数据项使用稳健的L1范数,通过高斯滤波对数据项平滑处理,抑制噪声干扰,并借助原始-对偶算法改善变分光流的求解效率;为进一步提高光流场的估计精度,引入了非局部中值滤波的全局优化策略;为提高算法对较大位移量估计的适应性,运用了由粗到精的金字塔方法。采用Middlebury光流数据库图像和真实场景图像对改进的TV-L1光流估计算法进行了实验验证。结果表明,提出的改进变分光流算法具有较强的稳健性,其光流估计精度优于传统的TV-L1模型算法。 展开更多
关键词 机器视觉 变分光流 非局部中值滤波 数据项 原始=对偶
原文传递
Primal-dual algorithms for total variation based image restoration under Poisson noise Dedicated to Professor Lin Qun on the Occasion of his 80th Birthday 被引量:5
2
作者 WEN YouWei CHAN Raymond Honfu ZENG TieYong 《Science China Mathematics》 SCIE CSCD 2016年第1期141-160,共20页
We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is c... We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler(KL)-divergence term for the Poisson noise and a total variation(TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers(ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock's first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach. 展开更多
关键词 image restoration Poisson noise total variation (TV) alternating direction method of multipliers (ADMM) PRIMAL-DUAL minimax problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部