How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of f...How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved.展开更多
The status of primary types of European butterflies established by C.Linnaeus is revised.Lectotype status is confirmed for 38 taxa.Lectotypes of the following taxa are designated in this paper:Papilio apollo Linnaeus,...The status of primary types of European butterflies established by C.Linnaeus is revised.Lectotype status is confirmed for 38 taxa.Lectotypes of the following taxa are designated in this paper:Papilio apollo Linnaeus,1758;P.daplidice Linnaeus,1758 and P.palaeno Linnaeus,1761.For the following 18 species-group taxa,the status of primary types changed from lectotypes to holotypes(by monotypy)due to their presence in the Linnean collection by single specimens:Papilio aglaja Linnaeus,1758;P.atalanta Linnaeus,1758;P.boeticus Linnaeus,1767;P.cardui Linnaeus,1758;P.cinxia Linnaeus,1758;P.deianira Linnaeus,1764;P.euphrosyne Linnaeus,1758;P.hero Linnaeus,1761;P.janira Linnaeus,1758;P.jurtina Linnaeus,1758;P.lathonia Linnaeus,1758;P.levana Linnaeus,1758;P.megera Linnaeus,1767;P.paphia Linnaeus,1758;P.polychloros Linnaeus,1758;P.rhamni Linnaeus,1758;P.rubi Linnaeus,1758 and P.sinapis Linnaeus,1758.Butterflies that do not have a pronounced sexual dimorphism and bright and contrasting coloration in the Linnean collection are represented in most cases by a single type specimen.The largest,brightest and most beautiful butterflies in the Linnean collection have a type series of the maximum size(4 specimens).There are no series of 5 or more specimens for European butterflies in Linnaeus’collection.展开更多
TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to th...TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.展开更多
The wave-forcing 'Coriolis-Stokes forcing' and 'Stokes-vortex force' induced by Stokes drift affect the upper ocean jointly.To study the effect of the wave-induced Stokes drift on the dynamics of the o...The wave-forcing 'Coriolis-Stokes forcing' and 'Stokes-vortex force' induced by Stokes drift affect the upper ocean jointly.To study the effect of the wave-induced Stokes drift on the dynamics of the ocean mixed layer,a new three-dimensional(3D) numerical model is derived using the primitive basic equations and Eulerian wave averaging.The Princeton Ocean Model(POM),a 3D primitive equation ocean model is used with the upper wave-averaged basic equations.The global ocean circulation is simulated using the POM model,and the Stokes drift is evaluated based on the wave data generated by WAVEWATCH III.We compared simulations with and without the Stokes drift.The results show that the magnitude of the Stokes drift is comparable with the Eulerian mean current.Including the Stokes drift in the ocean model affects both the Eulerian current and the Lagranian drift and causes the vertical mixing coefficients to increase.展开更多
Objective: The aim of our study was to observe the survival and morphological changes of thawed ovarian tis- sues after heterotopic transplantation. Methods: Twenty SPF-SD female rats (5-6 weeks old) were equally ...Objective: The aim of our study was to observe the survival and morphological changes of thawed ovarian tis- sues after heterotopic transplantation. Methods: Twenty SPF-SD female rats (5-6 weeks old) were equally randomized into the control group and experimental group. In control group, the freshly isolated ovaries were fixed in formalin. In experimental group, the freshly isolated ovaries were vitrified immediately and cut into thin slices. After stored in liquid nitrogen for 21 days, the tissues of experimental group were rapidly thawed and transplanted into back muscles of rats for 2 or 4 weeks, respectively. After that, all rats in experimental group were sacrificed and the ovarian tissues were collected and fixed in 4% formaldehyde solution. Then the ovarian tissues were stained with HE and observed under the light confocal microscope. Re- suits: With the naked eyes, there was no specific alteration except the size reduction with color changing. Under microscopy, we found normal cortex and medulla in the ovary, and the primordial follicles and follicles in various stages were observed in the cortex. The normal oocytes in ovarian tissues of experimental group were significant decreased than in the control group. Conclusion: The ovarian tissues survive well in experimental group and there is no significant difference in the proportion of follicles between different times (2 and 4 weeks) after grafting. Our results suggest that thawed ovarian tissues could survive after heterotopic transplantation into back muscles of rat models and maintain their morphology and function.展开更多
The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy ...The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.展开更多
To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge ...To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge strength based on three psychophysical principles, including Weber’s Law, Fechner’s Law, and Stevens’ Power Law, and integrated these parameters into a fuzzy logic system to set up an advanced image interpolation algorithm. Application of this algorithm to detect edge behaviors and local statistical information of images demonstrated better noise removal ability and obtained sharper edges than traditional image interpolation algorithems such as nearest neighbor, bilinear and bicubic interpolation methods.展开更多
This paper is mainly concerned with modeling nonlinear internal waves in the ocean of great depth.The ocean is assumed to be composed of three homogeneous fluid layers of different densities in a stable stratified con...This paper is mainly concerned with modeling nonlinear internal waves in the ocean of great depth.The ocean is assumed to be composed of three homogeneous fluid layers of different densities in a stable stratified configuration.Based on the Ablowitz-Fokas-Musslimani formulation for irrotational flows,strongly nonlinear and weakly nonlinear models are developed for the“shallow-shallow-deep”and“deep-shallow-deep”scenarios.Internal solitary waves are computed using numerical iteration schemes,and their global bifurcation diagrams are obtained by a numerical continuation method and compared for different models.For the“shallow-shallow-deep”case,both mode-1 and mode-2 internal solitary waves can be found,and a pulse broad-ening phenomenon resulting in conjugate flows is observed in the mode-2 branch.While in the“deep-shallow-deep”situation,only mode-2 solitary waves can be obtained.The existence and stability of mode-2 internal solitary waves are confirmed by solving the primitive equations based on the MITgcm model.展开更多
Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the z...Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.展开更多
Two models based on the hydrostatic primitive equations are proposed.The first model is the primitive equations with partial viscosity only,and is oriented towards large-scale wave structures in the ocean and atmosphe...Two models based on the hydrostatic primitive equations are proposed.The first model is the primitive equations with partial viscosity only,and is oriented towards large-scale wave structures in the ocean and atmosphere.The second model is the viscous primitive equations with spectral eddy viscosity,and is oriented towards turbulent geophysical flows.For both models,the existence and uniqueness of global strong solutions are established.For the second model,the convergence of the solutions to the solutions of the classical primitive equations as eddy viscosity parameters tend to zero is also established.展开更多
基金funded by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-XB3-08)the National Natural Science Foundation of China (31070405)
文摘How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved.
文摘The status of primary types of European butterflies established by C.Linnaeus is revised.Lectotype status is confirmed for 38 taxa.Lectotypes of the following taxa are designated in this paper:Papilio apollo Linnaeus,1758;P.daplidice Linnaeus,1758 and P.palaeno Linnaeus,1761.For the following 18 species-group taxa,the status of primary types changed from lectotypes to holotypes(by monotypy)due to their presence in the Linnean collection by single specimens:Papilio aglaja Linnaeus,1758;P.atalanta Linnaeus,1758;P.boeticus Linnaeus,1767;P.cardui Linnaeus,1758;P.cinxia Linnaeus,1758;P.deianira Linnaeus,1764;P.euphrosyne Linnaeus,1758;P.hero Linnaeus,1761;P.janira Linnaeus,1758;P.jurtina Linnaeus,1758;P.lathonia Linnaeus,1758;P.levana Linnaeus,1758;P.megera Linnaeus,1767;P.paphia Linnaeus,1758;P.polychloros Linnaeus,1758;P.rhamni Linnaeus,1758;P.rubi Linnaeus,1758 and P.sinapis Linnaeus,1758.Butterflies that do not have a pronounced sexual dimorphism and bright and contrasting coloration in the Linnean collection are represented in most cases by a single type specimen.The largest,brightest and most beautiful butterflies in the Linnean collection have a type series of the maximum size(4 specimens).There are no series of 5 or more specimens for European butterflies in Linnaeus’collection.
基金Under the auspices of the National Natural Science Foundation of China (No. 40171015)
文摘TOPMODEL,a semi-distributed hydrological model,has been widely used.In the process of simulation of the model,Digital Elevation Model(DEM) is used to provide the input data,such as topographic index and distance to the drainage outlet;thus DEM plays an important role in TOPMODEL.This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL.In this paper,the effects were evaluated mainly from quantitative and qualitative aspects.Firstly,DEM uncertainty was simulated by using the Monte Carlo method,and for every DEM realization,the topographic index and distance to the drainage outlet were extracted.Secondly,the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rain-storm-flood events,and four evaluation indices,such as Nash and Sutcliffe efficiency criterion(EFF),sum of squared residuals over all time steps(SSE),sum of squared log residuals over all time steps(SLE) and sum of absolute errors over all time steps(SAE) were recorded.Thirdly,these four evaluation indices were analyzed in statistical manner(minimum,maximum,range,standard deviation and mean value),and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed.Finally,the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases.Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model’s application.This can be explained by:1) TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet;2) the distri-bution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.
基金Supported by the National Natural Science Foundation of China(No.41376028)the Open Fund of the Shandong Province Key Laboratory of Ocean Engineering,Ocean University of China(No.201362045)
文摘The wave-forcing 'Coriolis-Stokes forcing' and 'Stokes-vortex force' induced by Stokes drift affect the upper ocean jointly.To study the effect of the wave-induced Stokes drift on the dynamics of the ocean mixed layer,a new three-dimensional(3D) numerical model is derived using the primitive basic equations and Eulerian wave averaging.The Princeton Ocean Model(POM),a 3D primitive equation ocean model is used with the upper wave-averaged basic equations.The global ocean circulation is simulated using the POM model,and the Stokes drift is evaluated based on the wave data generated by WAVEWATCH III.We compared simulations with and without the Stokes drift.The results show that the magnitude of the Stokes drift is comparable with the Eulerian mean current.Including the Stokes drift in the ocean model affects both the Eulerian current and the Lagranian drift and causes the vertical mixing coefficients to increase.
文摘Objective: The aim of our study was to observe the survival and morphological changes of thawed ovarian tis- sues after heterotopic transplantation. Methods: Twenty SPF-SD female rats (5-6 weeks old) were equally randomized into the control group and experimental group. In control group, the freshly isolated ovaries were fixed in formalin. In experimental group, the freshly isolated ovaries were vitrified immediately and cut into thin slices. After stored in liquid nitrogen for 21 days, the tissues of experimental group were rapidly thawed and transplanted into back muscles of rats for 2 or 4 weeks, respectively. After that, all rats in experimental group were sacrificed and the ovarian tissues were collected and fixed in 4% formaldehyde solution. Then the ovarian tissues were stained with HE and observed under the light confocal microscope. Re- suits: With the naked eyes, there was no specific alteration except the size reduction with color changing. Under microscopy, we found normal cortex and medulla in the ovary, and the primordial follicles and follicles in various stages were observed in the cortex. The normal oocytes in ovarian tissues of experimental group were significant decreased than in the control group. Conclusion: The ovarian tissues survive well in experimental group and there is no significant difference in the proportion of follicles between different times (2 and 4 weeks) after grafting. Our results suggest that thawed ovarian tissues could survive after heterotopic transplantation into back muscles of rat models and maintain their morphology and function.
文摘The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.
基金Funded by Key Research Project of Liaoning Province Bureau of Science and Technology under the grant No. 2008217004China's Post-Doctoral Science Fund under the grant No. 200704111071
文摘To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge strength based on three psychophysical principles, including Weber’s Law, Fechner’s Law, and Stevens’ Power Law, and integrated these parameters into a fuzzy logic system to set up an advanced image interpolation algorithm. Application of this algorithm to detect edge behaviors and local statistical information of images demonstrated better noise removal ability and obtained sharper edges than traditional image interpolation algorithems such as nearest neighbor, bilinear and bicubic interpolation methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.11911530171,11772341,and 42006016)the Key Program of National Natural Science Foundation of China(Grant Nos.12132018,and 91958206)the Natural Science Foundation of Shandong Province(Grant No.ZR2020QD063).
文摘This paper is mainly concerned with modeling nonlinear internal waves in the ocean of great depth.The ocean is assumed to be composed of three homogeneous fluid layers of different densities in a stable stratified configuration.Based on the Ablowitz-Fokas-Musslimani formulation for irrotational flows,strongly nonlinear and weakly nonlinear models are developed for the“shallow-shallow-deep”and“deep-shallow-deep”scenarios.Internal solitary waves are computed using numerical iteration schemes,and their global bifurcation diagrams are obtained by a numerical continuation method and compared for different models.For the“shallow-shallow-deep”case,both mode-1 and mode-2 internal solitary waves can be found,and a pulse broad-ening phenomenon resulting in conjugate flows is observed in the mode-2 branch.While in the“deep-shallow-deep”situation,only mode-2 solitary waves can be obtained.The existence and stability of mode-2 internal solitary waves are confirmed by solving the primitive equations based on the MITgcm model.
基金supported by the ANR (No. ANR-06-BLAN0306-01)the National Science Foundation (No.NSF-DMS-0906440) and the Research Fund of Indiana University
文摘Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.
基金supported by the US Department of Energy grant (No. DE-SC0002624) as part of the "Climate Modeling:Simulating Climate at Regional Scale" programsupported by the National Science Foundation(No. DMS0606671,DMS1008852)
文摘Two models based on the hydrostatic primitive equations are proposed.The first model is the primitive equations with partial viscosity only,and is oriented towards large-scale wave structures in the ocean and atmosphere.The second model is the viscous primitive equations with spectral eddy viscosity,and is oriented towards turbulent geophysical flows.For both models,the existence and uniqueness of global strong solutions are established.For the second model,the convergence of the solutions to the solutions of the classical primitive equations as eddy viscosity parameters tend to zero is also established.