The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and mic...The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.展开更多
In this work, we evaluate the properties of solution casted polysulfone (PSf)/sulfonated polyethersulfone (SPES) blend membranes prepared by non-solvent induced phase inversion technique. The morphologies of these...In this work, we evaluate the properties of solution casted polysulfone (PSf)/sulfonated polyethersulfone (SPES) blend membranes prepared by non-solvent induced phase inversion technique. The morphologies of these blend membranes, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging, indicated a smoother skin layer and an increased number of highly interconnected pores in the sub layer. The efficacy of the prepared membranes was evaluated in terms of porosity, ultrafiltration rate (UFR), molecular weight cut-off (MWCO) and mean pore size. The hydrophilicity of these membranes was in consonance with contact angle values. It was observed that the selectivity and the UFR of the blend membranes were higher when compared to pristine membranes. Furthermore, these blend membranes demonstrated an increase in biocompatibility - prolonged blood clotting time, suppressed platelet adhesion, reduced protein adsorption and lower complement activation. These membranes were also investigated for uremic solute removal. Diffusive permeability of middle molecular weight cytochrome-c revealed an increase from 8 × 10 ^-4 cm·s ^-1 to 18 × 10^-4 cm· s^- and illustrates the possibility that these sulfonated PES/PSf blend membranes can be used to prepare membrane modules for hemodialysis applications.展开更多
A novel composite charged mosaic membrane(CCMM) was prepared via interfacial polymerization(IP) of polyamine[poly(epichlorohydrin amine) ]and trimesoyl chloride(TMC) on the polyethersulfone(PES) support. Fourier trans...A novel composite charged mosaic membrane(CCMM) was prepared via interfacial polymerization(IP) of polyamine[poly(epichlorohydrin amine) ]and trimesoyl chloride(TMC) on the polyethersulfone(PES) support. Fourier transform infrared spectroscopy(FT-IR) ,environmental scanning electron microscopy(ESEM) ,atomic force microscopy(AFM) and water contact angle analysis were applied to characterize the resulted CCMM.The FT-IR spectrum indicates that TMC reacts sufficiently with polyamine.ESEM and AFM pictures show that the IP process produces a dense selective layer on the support membrane.The water contact angle of the CCMM is smaller than that of the substrate membrane because of the cross-linked hydrophilic polyamine network.Several factors affecting the IP reaction and the performance of the CCMM,such as monomer concentration,reaction time,pH value of aqueous phase solution and post-treatment,were studied.The pure water flux of the optimized CCMM is 14.73 L·m -2 ·h -1 ·MPa -1 at the operating pressure of 0.4 MPa.The values of separation factorαfor NaCl/PEG1000/water and MgCl2/PEG1000/water are 11.89 and 9.96,respectively.These results demonstrate that CCMM is promising for the separation of low-molecular-weight organics from their salt aqueous solutions.展开更多
Anodic oxide films of titanium alloy Ti-10V-2Fe-3Al were sealed in calcium acetate solution. The morphology and composition of the sealed films were investigated using scanning electron microscopy (SEM), atomic force ...Anodic oxide films of titanium alloy Ti-10V-2Fe-3Al were sealed in calcium acetate solution. The morphology and composition of the sealed films were investigated using scanning electron microscopy (SEM), atomic force microscope (AFM) and energy dispersive spectroscopy (EDS). The results show that the sealing process makes the anodic oxide films more uniform. Elemental calcium is presented through the whole depth of the anodic oxide films. The roughness of the anodic oxide films is reduced after the sealing process. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the corrosion behavior of the anodic oxide films. It is revealed that the sealing process improves the corrosion resistance of the anodic oxide film of titanium alloy Ti-10V-2Fe-3Al.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the anal...The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.展开更多
A series of ablation experiments on silicon surface by femtosecond laser system of 775 nm and 150 fs duration pulses were carried out.The morphological characteristics and the associated effect in the ablation were te...A series of ablation experiments on silicon surface by femtosecond laser system of 775 nm and 150 fs duration pulses were carried out.The morphological characteristics and the associated effect in the ablation were tested by atomic force microscope(AFM),scanning electron microscope(SEM),focused ion beam(FIB),and the optic microscope.The single pulse threshold can be obtained directly.For the multiple pulses,the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect.By analyzing the experimental data,the thresholds of laser fluences under various laser pulse numbers were obtained,and the relationships between ablation area and laser energy and laser pulse number were concluded.Meanwhile,the periodic ripple structure on silicon surface was found.Under the condition of certain laser power,the number of laser pulse can influence the formation of ripples.展开更多
We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and...We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 rim, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.展开更多
基金Project(51474253)supported by the National Natural Science Foundation of China。
文摘The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.
基金supported by the Department of Science and Technology (DST),Government of India (IDP/MED/2010/17/2(General)
文摘In this work, we evaluate the properties of solution casted polysulfone (PSf)/sulfonated polyethersulfone (SPES) blend membranes prepared by non-solvent induced phase inversion technique. The morphologies of these blend membranes, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging, indicated a smoother skin layer and an increased number of highly interconnected pores in the sub layer. The efficacy of the prepared membranes was evaluated in terms of porosity, ultrafiltration rate (UFR), molecular weight cut-off (MWCO) and mean pore size. The hydrophilicity of these membranes was in consonance with contact angle values. It was observed that the selectivity and the UFR of the blend membranes were higher when compared to pristine membranes. Furthermore, these blend membranes demonstrated an increase in biocompatibility - prolonged blood clotting time, suppressed platelet adhesion, reduced protein adsorption and lower complement activation. These membranes were also investigated for uremic solute removal. Diffusive permeability of middle molecular weight cytochrome-c revealed an increase from 8 × 10 ^-4 cm·s ^-1 to 18 × 10^-4 cm· s^- and illustrates the possibility that these sulfonated PES/PSf blend membranes can be used to prepare membrane modules for hemodialysis applications.
基金Supported by the National High Technology Research and Development Program of China(2008AA06Z330) the National Natural Science Foundation of China(20676125) the Technician Service Enterprise Action Program(2009GJD00048)
文摘A novel composite charged mosaic membrane(CCMM) was prepared via interfacial polymerization(IP) of polyamine[poly(epichlorohydrin amine) ]and trimesoyl chloride(TMC) on the polyethersulfone(PES) support. Fourier transform infrared spectroscopy(FT-IR) ,environmental scanning electron microscopy(ESEM) ,atomic force microscopy(AFM) and water contact angle analysis were applied to characterize the resulted CCMM.The FT-IR spectrum indicates that TMC reacts sufficiently with polyamine.ESEM and AFM pictures show that the IP process produces a dense selective layer on the support membrane.The water contact angle of the CCMM is smaller than that of the substrate membrane because of the cross-linked hydrophilic polyamine network.Several factors affecting the IP reaction and the performance of the CCMM,such as monomer concentration,reaction time,pH value of aqueous phase solution and post-treatment,were studied.The pure water flux of the optimized CCMM is 14.73 L·m -2 ·h -1 ·MPa -1 at the operating pressure of 0.4 MPa.The values of separation factorαfor NaCl/PEG1000/water and MgCl2/PEG1000/water are 11.89 and 9.96,respectively.These results demonstrate that CCMM is promising for the separation of low-molecular-weight organics from their salt aqueous solutions.
基金Project(51171011)supported by the National Natural Science Foundation of China
文摘Anodic oxide films of titanium alloy Ti-10V-2Fe-3Al were sealed in calcium acetate solution. The morphology and composition of the sealed films were investigated using scanning electron microscopy (SEM), atomic force microscope (AFM) and energy dispersive spectroscopy (EDS). The results show that the sealing process makes the anodic oxide films more uniform. Elemental calcium is presented through the whole depth of the anodic oxide films. The roughness of the anodic oxide films is reduced after the sealing process. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the corrosion behavior of the anodic oxide films. It is revealed that the sealing process improves the corrosion resistance of the anodic oxide film of titanium alloy Ti-10V-2Fe-3Al.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.
基金Work(R0A-2007-000-20042-0) partly supported by the Second Stage of Brain Korea 21 Projectspartly by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology of Korea
文摘The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.
基金Supported by National High Technology Research and Development Program of China ("863"Program) (No.2006AA04Z327)National Natural Science Foundation of China (No.60372006)Program for New Century Excellent Talents in University
文摘A series of ablation experiments on silicon surface by femtosecond laser system of 775 nm and 150 fs duration pulses were carried out.The morphological characteristics and the associated effect in the ablation were tested by atomic force microscope(AFM),scanning electron microscope(SEM),focused ion beam(FIB),and the optic microscope.The single pulse threshold can be obtained directly.For the multiple pulses,the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect.By analyzing the experimental data,the thresholds of laser fluences under various laser pulse numbers were obtained,and the relationships between ablation area and laser energy and laser pulse number were concluded.Meanwhile,the periodic ripple structure on silicon surface was found.Under the condition of certain laser power,the number of laser pulse can influence the formation of ripples.
基金the financial support of the Kavli Nanoscience Institute (KNI) through LEE Seok-Woo’s prized post-doctoral fellowship, of the Keck Institute for Space Studies at Caltech, and of JRG’s NASA Early Career grantCHENG YinTong acknowledges the financial support of the Caltech SURF program
文摘We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 rim, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.