In this paper,the force-distance curves have been employed to investigate the force sensing properties of the probe-type microforce sensors.In the preliminary studies,two kinds of probe-type microforce sensors have be...In this paper,the force-distance curves have been employed to investigate the force sensing properties of the probe-type microforce sensors.In the preliminary studies,two kinds of probe-type microforce sensors have been used to load the objects with dry and wetted surfaces.One is a developed piezoresistive cantilever force sensor with sensitivity of 35 μN/V and the other an atomic force microscope(AFM) cantilever beam probe with sensitivity of 10.4 nN/V.The force outputs corresponding to the regimes of approaching,indenting,and loading are obtained,and the properties of the stability in the approaching regime of the sensors,local mechanical behavior of the tested objects in the indenting regime,and the force sensing of the global samples are analyzed.Experimental results of this analysis are also presented.展开更多
Inorganic silica-titania thin films with thicknesses 150 nm-200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force li...Inorganic silica-titania thin films with thicknesses 150 nm-200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force lithography technique. Subsequently grating structure is embossed in green stage. The patterned gel films are subjected to stepwise heat treatment to 500 ℃ and above in pure oxygen atmosphere in order to achieve major conversion of mixed-gel to oxide optical films which are characterized by Ellipsometry, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) to optimize the fabrication parameters and to get perfectly matched film. Removal of organics and formation of perfectly inorganic silica-titania network at optimized heat treatment in controlled environment are ensured by FTIR spectral study. The difference in refractive indices between the substrate and coated film as developed waveguides for operating wavelength show the planar waveguide behavior of the films. calculated theoretically matches exactly with the (632.8 nm) and the measured optical properties展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 10972113 and 10732080)the National Basic Research Program of China (Grant Nos 2007CB936803 and 2010CB631005)SRFDP (Grant No 20070003053)
文摘In this paper,the force-distance curves have been employed to investigate the force sensing properties of the probe-type microforce sensors.In the preliminary studies,two kinds of probe-type microforce sensors have been used to load the objects with dry and wetted surfaces.One is a developed piezoresistive cantilever force sensor with sensitivity of 35 μN/V and the other an atomic force microscope(AFM) cantilever beam probe with sensitivity of 10.4 nN/V.The force outputs corresponding to the regimes of approaching,indenting,and loading are obtained,and the properties of the stability in the approaching regime of the sensors,local mechanical behavior of the tested objects in the indenting regime,and the force sensing of the global samples are analyzed.Experimental results of this analysis are also presented.
文摘Inorganic silica-titania thin films with thicknesses 150 nm-200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force lithography technique. Subsequently grating structure is embossed in green stage. The patterned gel films are subjected to stepwise heat treatment to 500 ℃ and above in pure oxygen atmosphere in order to achieve major conversion of mixed-gel to oxide optical films which are characterized by Ellipsometry, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) to optimize the fabrication parameters and to get perfectly matched film. Removal of organics and formation of perfectly inorganic silica-titania network at optimized heat treatment in controlled environment are ensured by FTIR spectral study. The difference in refractive indices between the substrate and coated film as developed waveguides for operating wavelength show the planar waveguide behavior of the films. calculated theoretically matches exactly with the (632.8 nm) and the measured optical properties